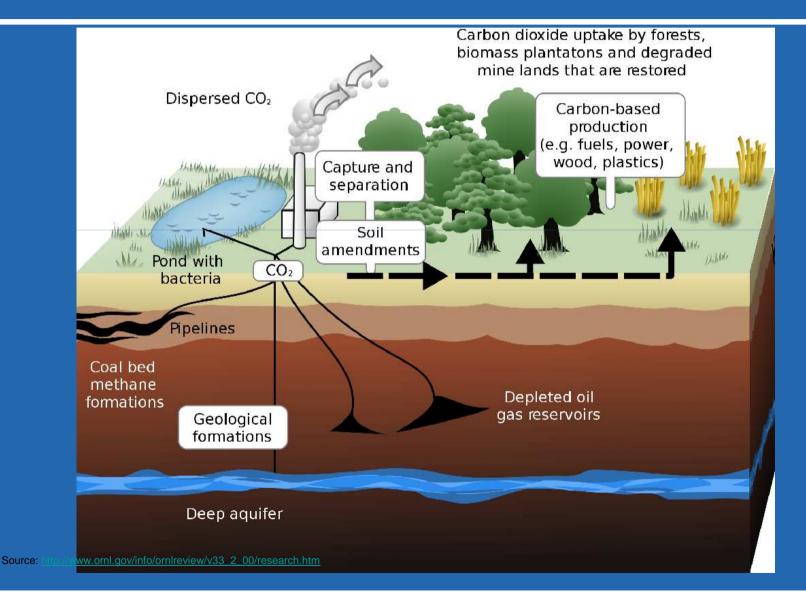


How to maximize the value of mature HC fields?

Evaluation of CCS possibilities in Hungary

Gabor Juhasz reservoir engineer


Peter Kubus project development advisor Mol PIC.

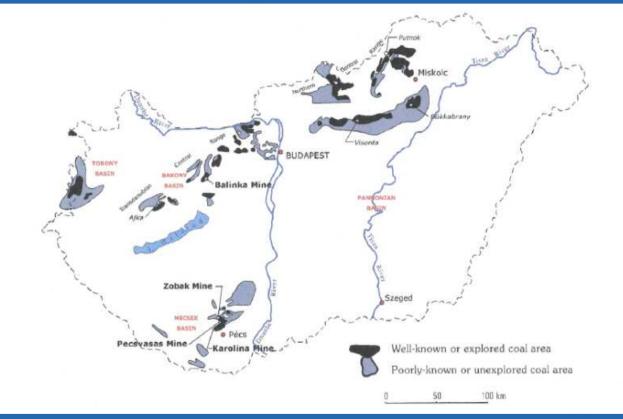
18. November 2010 Society of Petroleum Engineers

Geological storage of CO2 Case study in Hungary: Mátra CCS Risks of storing CO2, Risk-management Reservoir engineering study

CCS Carbon Capture and Sequestration

CO2 storage possibility in Hungary

The available alternatives for storing CO2 : •depleted oil and gas fields •deep saline aquifers, •unmineable coal beds


In 2009 our R&D study presented answers in

- CO2 storage possibilities in Hungary
 - in deep saline aquifers
 - coal beds
- CO2 storage potential of the
 - depleted hydrocarbon reservoirs in Hungary

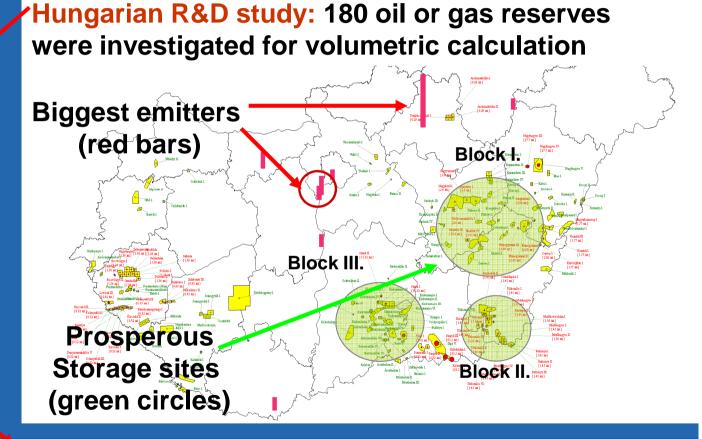
Storing in unmineable coal seams

CO2 gas can be adsorbed on the surface of the coal and in the fractures

Estimation of the storage capacity : 300 Million t CO2.

The efficiency of the adsorption of the Hungarian coals is very low, so this storing method is not relevant.

Storing in depleted oil and gas fields

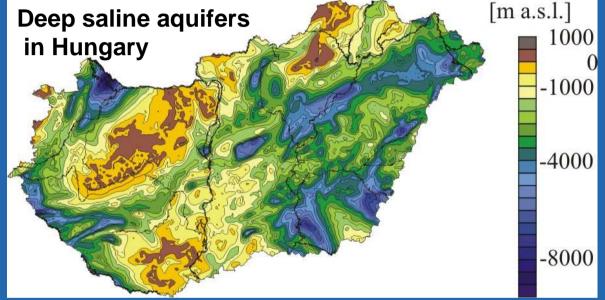

Reservoirs were excluded if:

capacity less than1 million tons.

 operated as an underground gas storage

 surface is highly populated

 bad geology or well conditions



23-26 reservoirs are technically and economically viable for CO2 storage with max. 150 Million tons of CO2 capacity

Storing in deep saline aquifers

Suitable aquifers are at least 800 meters depth and contain water not drinkable.

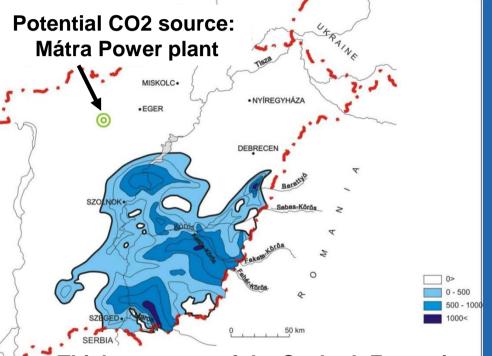
The exact **location** and the real volume of the saline aquifers are **partly known**

Huge exploration cost needed for creating reservoir engineering studies by carrying out 3D seismic surveys, and exploration drills

Storing in aquifer - Szolnok Formation

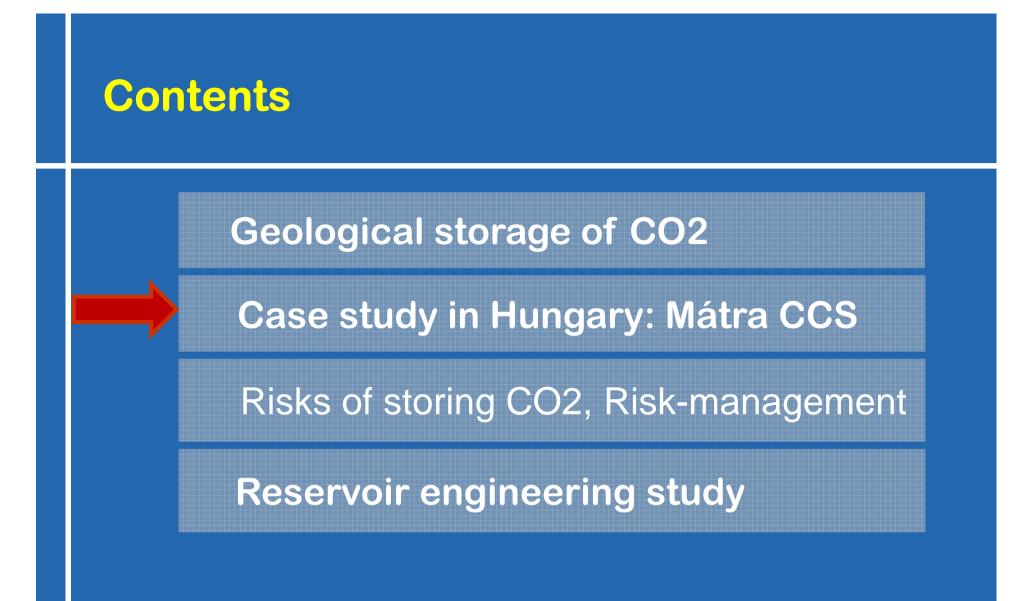
Criterion:

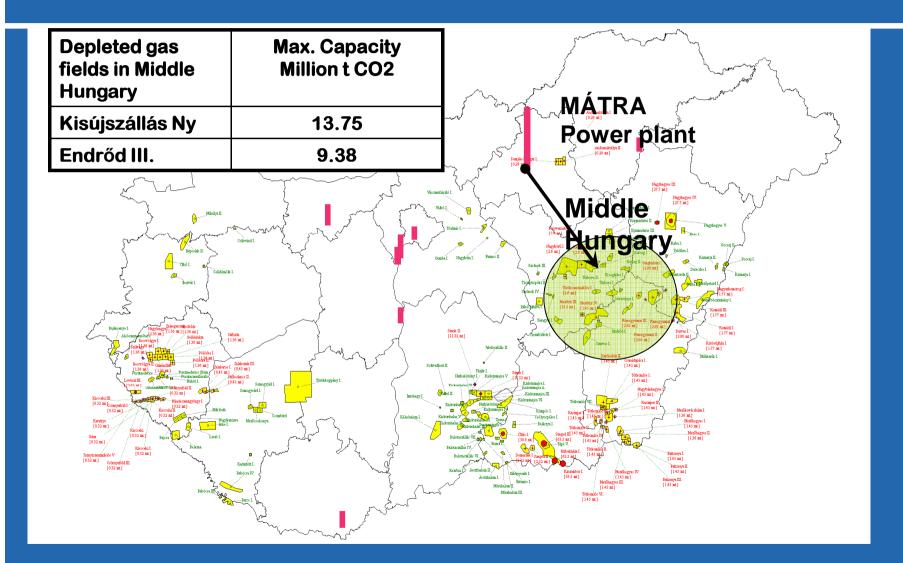
- proven regional seal
- more than 800m depth
- sufficient CO2 storage capacity
- Effective petrophysic properties


Estimation of the storage potential

Storable CO2 quantity (by Prof. Pápay, 2007):

 $M_{CO2} = \varphi_x C_x V_x \Delta p_x \rho_{CO2}$


where:



Thickness map of the Szolnok Formation

Theoretical maximum amount of 2510 Million t CO2

Possible Capture and Storage sites in Hungary

Data of Capture in Mátra CCS Project

POWER GENERATION The new lignite-fired power plant unit Capacity: 500 MW Net efficiency: ≥ 42% (elec.)

Capture area

Post combustion based on chemical absorption (amine) in combination with heat induced CO2 recovery. CAPTURETechnology:post coCO2 absorber:MEACapture efficiency:min. 85%Efficiency with CCS:32-33%Outlet CO2 pressure:100 barStatus:feasibility

post combustionMEAmin. 85%32-33%100 barfeasibility study

Data of Transport and Storage in Mátra CCS

STORAGE

First storage phase:

well known

in depleted gas fields

Formation: Depleted hydrocarbon (gas) reservoirs

- field Kisújszállás Ny.
- field Endrőd III.

CO2 capacity: ca. 24 Million t

Fill-up time: Depth: Reservoir rock: 7 years 1200-2000 m sandstone

Second storage phase in the regional aquifer

More data are needed

TRANSPORT

CO2 transportation via pipeline

Formation: Aquifer (Szolnok Fm), (close to Endrőd)

Depth of top:> 800 mPorosity:15-25%Permeability:40-80 mDThickness:800-1000 mStorage capacity:ca. 250 Million t

From the Power Plant to the Storage site

Length: Diameter: Pressure: 116 km 350 mm 120 bar

Geological storage of CO2 Case study in Hungary: Mátra CCS Risks of storing CO2, Risk-management

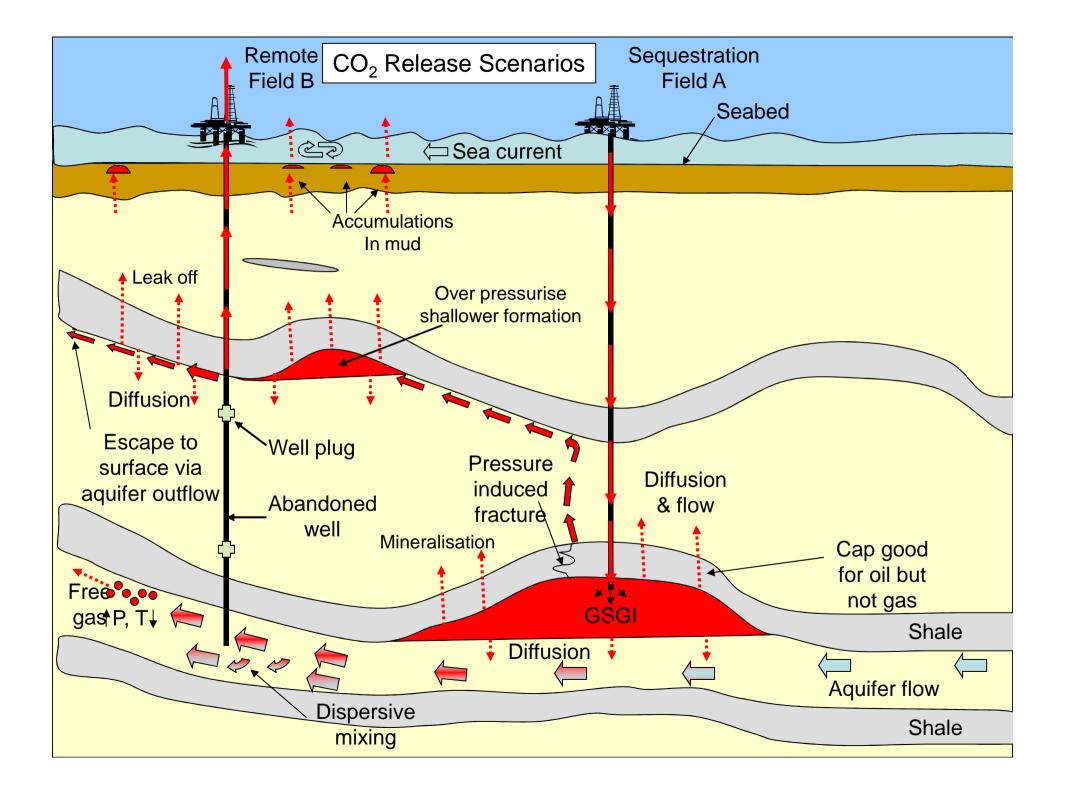
Reservoir engineering study

Risks of storing CO2

Leakage is the most significant risk of CO2 storage:

Risks:

CO2 leakage from the reservoir to the upper layers and to atmosphere


Reactivation of fractures

Ground movement

Displacement of brine

- CO2 leakage can occur in case of the inability of the cap rock
- CO2 can escape through the old wells if they are not plugged in the proper way

through aquifer flows in the reservoir.

Risk management of CO2 storage: 1. Site selection

Good reservoir parameters go half the way towards mitigating risks

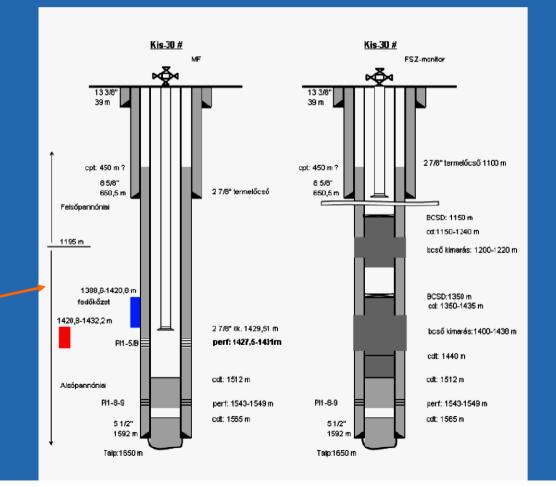
Good storage

parameters

- High porosity
- Big storage volume
- High permeability
- Low temperature
- Appropriate cap rock with good sealing
- Geologic and Hydrodynamic Stability

Preparation of site selection in deep saline aquifers:

- 1. Re-evaluation of old 2D seismics
- 2. Re-evaluation of drilling data of old wells
- 3. Making pre-estimated geology maps with cap rocks
- 4. Evaluate candidate areas
- 5. Determine the best candidate
- 6. Execute 3D surveys
- 7. Evaluate 3D surveys
- 8. Exploration wells drilling with mugs
- 9. Geology study and Evaluation


Risk management of CO2 storage: 2. perfect well conditions

Old wells can be used for injection or monitoring if only they have:

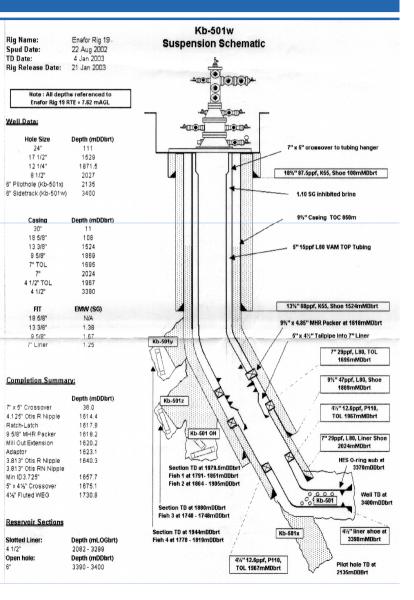
- CO2 resistant cement,
- perfect cement measurement
- good casing

Most of the wells do not have CO2 resistant cement and casing, it is <u>a must to drill</u> <u>new wells</u> for the purpose of <u>injection</u>

Avoiding the leakage problems we have to abandon most of the existing wells.

Risk management of CO2 storage: 2. perfect well conditions

Vertical wells in hydrostatic pressure aquifer are not suggested:


• in the long vertical section the suppression can cause fractures at the top!!!

In Salah CO2 injection:

<u>1,4 Mm3/day</u> into a low permeability sandstone by <u>3 horizontal wells</u>

Formation thickness: 20 m Permeability: 10-20mD Pressure: 185 bar

Horizontal segment: 1200 m long

Risk management of CO2 storage: 3. Monitoring

Examples of monitoring techniques

The stored CO2 quantity and the trapping mechanism have to be verified,

and this system can provide early warning of storage failure.

Monitoring group	Monitoring technologies	Compartment
Engineering	Pressure, temperature , well tests	Wells
Geophysical	Seismics (3D), micro seismicity, gravimetry, electro-magnetic, self- potential, physical well logging	Reservoir and back -ground system, wells
Geochemical	Production water & gas analysis , tracers , overburden fluids, direct measurements	Reservoir and surface system
Geodetic	Geodetic, tilt measurements, satellite interferometry , airborne sensing	Surface system, space
Biological	Microbial, vegetation changes	Surface and background system

Monitoring CO2 in In Salah

 The project has several key to be added and the several several beside desert location, with storage in low-permeability rock formations in the saline aquifer adjace

This demonstration project is relevant to many future CCS sites in in continental locations of

Monitoring/Modeling Studies/Reviews: 2005-2009

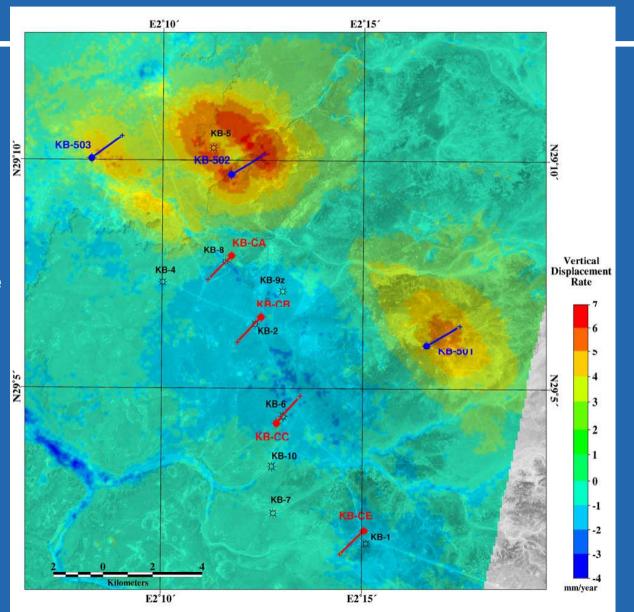
Monitoring technology	Risk to monitor	Action	
Wellhead sampling	Wellbore integrity Plume migration	- 2 monthly sampling since 2005	
Tracers	Plume Migration	- Implemented 2006	
Wireline Logging	Subsurface characterization	- Overburden samples and logs collected in new development wells	
Soil Gas flux	Surface seepage	- Pre-injection surveys in 2004 - Repeat survey in 2009	
3D/4D seismic	Plume migration	- Initial survey in 1997 - High resolution repeat 3D survey in 2009.	
Deep observation wells	Plume migration	- Not planned at present due to cost	
Microseismic	Caprock integrity	 Pilot well drilled in 2009 above KB-502 Depth 500m (1500m injection zone) 50 geophones array (10 three component 	
Electromagnetic	Plume migration	- Shown not to be useful at Krechba	
Gravity	Plume Migration	-Modelling suggests close to detection limits - May be tested in 2011	
VSP	Caprock integrity Fracture evaluation	 Modelling results inconclusive Decision depending on 3D VSP using microseismic array 	
Shallow aquifer wells	Contamination of potable aquifer Caprock breach	- Seven shallow aquifer wells drilled - Sampling twice per year	
Microbiology	Surface seepage	- First samples collected in 2009/2010	
Eddy covariance flux towers and LIDARs	Surface seepage	 Reviewed but ruled out due to weather conditions and potential theft issues Potential deployment in 2011 	
InSAR monitoring	Plume migration Caprock integrity Pressure Development	Used extensively; contributions and commissioned work from several providers Images captured every 28 days	
Tiltmeters/GPS	Plume Migration Caprock Integrity Pressure Development	To calibrate InSAR deformation To tiltmeters deployed around KB-501	

Fit-for-purpose Monitoring

S ds.

The key question the project had to address was which monitoring methods would be fit-for-purpose at this site. The criteria for determining this include: (a) ability of the method to detect CO2 migration as a fluid or gaseous phase, (b) the practical constraints for surface and down-hole tool deployment, and (c) cost. After a thorough and progressive review of the potential methods, the following monitoring portfolio has emerged:

- Downhole gas analysis (as a baseline for subsurface gas distributions)
- Surface gas analysis (as a baseline for surface gas distributions)
- Production and injection wellhead monitoring (including pressures, temperatures, gas composition, and detection of injected tracers)
- Micro-seismic monitoring (deployed in a dedicated monitoring well)
- Time-lapse 3D seismic (over a limited area of interest)
- Satellite (InSAR) data to detect surface deformation
- Tiltmeters and GPS stations to calibrate surface deformations
- Groundwater wells (to measure base-line groundwater chemistry and flow and to deploy longer-term CO2 monitoring devices)
- Core and well log data to characterise the reservoir and calibrate subsurface models.


Wellhead Monitoring

Seismic and Aquifer Monitoring

Monitoring CO2 by InSAR

Most interesting Novel tool: Satelit Imaging InSAR: Changing of 2 mm surface displacement can be measured 4D seizmiks & InSAR

show the same picture

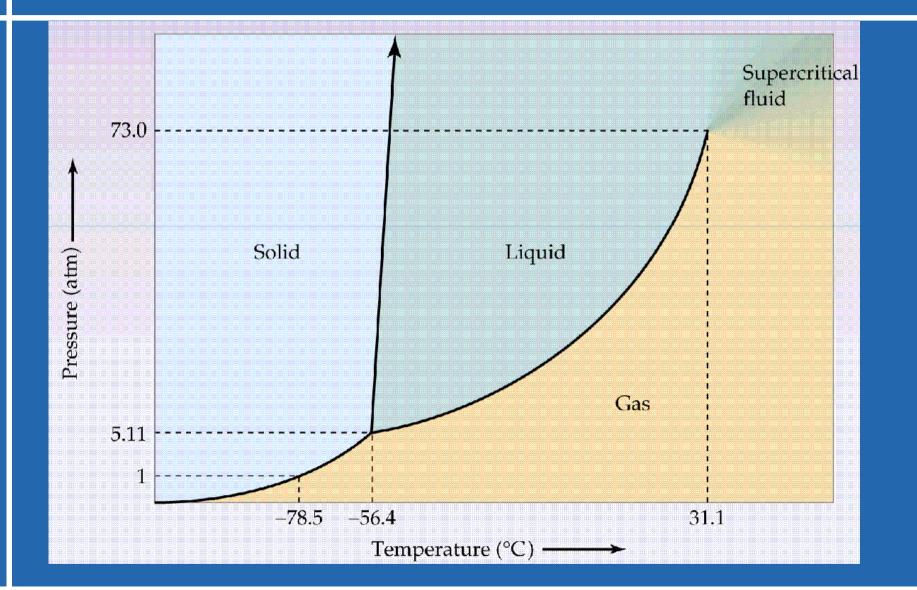
Geological storage of CO2 Case study in Hungary: Mátra CCS Risks of storing CO2, Risk-management

Reservoir engineering study

Geological structures and requirements for CCS

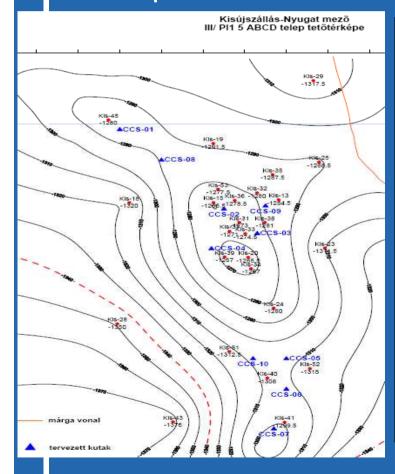
CCS can be developed in:

- depleted dry gas fields,
- depleted condensate field,
- depleted oil fields,
- aquifers,
- salt caverns,
- coal beds.

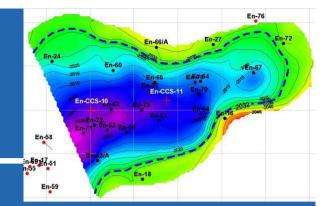

The minimum requierments:

- closure of structure,
- porosity for storage,
- permeability,
- sufficient HCPV in place for CCS,
- caprock integrity against migration and leak,
- sufficient depth (CO₂ fluid or supercritical phase).

Workflow

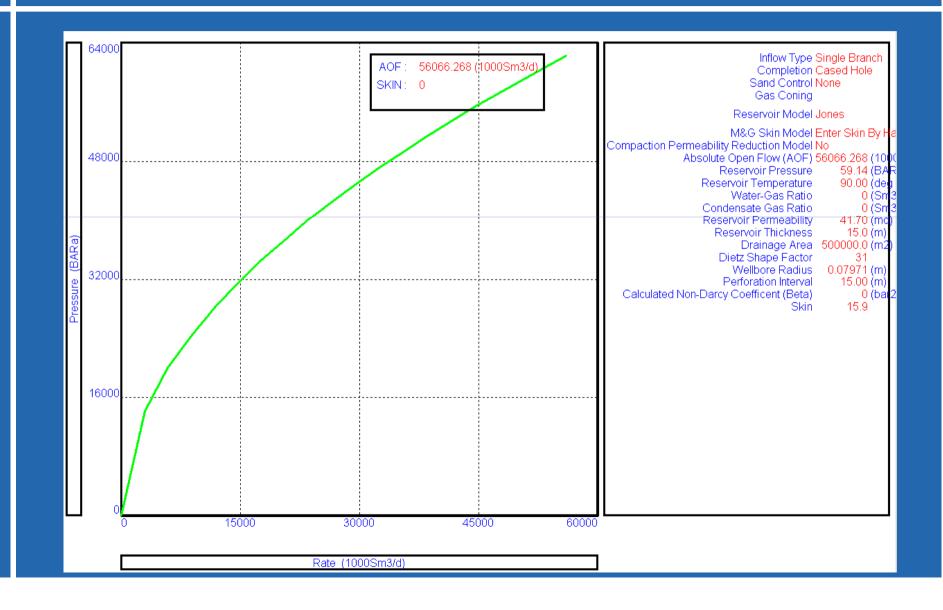

- PVT characterization,
- History matching,
- Well hydraulic modeling,
- Injector well modeling (based on the existing well),
- Define the maximum drawdown (fracture gradient),
- Calculate the optimal injection capacities,
- Calculate the optimal well number,
- Plan existing well abandonments,
- Plan completion of the new injector wells,
- Plan the monitoring system.

CO2 phase behavior

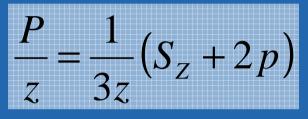

Kisújszállás-Nyugat field

Only 2 of 19 pannonian reservoir suitable for CCS The production started at 1983.

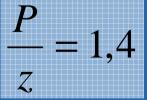
	III/Pl ₁ - 5ABCD
GIIP [10 ⁶ m ³]	5260
Driving mechanism	Small water
p _i [bar]	142,5
p _{05/31/2009} [bar]	56-63
Gp _{05/31/2009} [10 ⁶ m ³]	3816,5
Recovery factor [%]	72,6
Producing wells	15
Recoverable gas from 05/31/2009 $[10^6 \text{ m}^3]$	187,6
Average injecton rate [10 ³ sm ³ /well/day]	206


Endrőd-III field

Only 4 of 29 pannonian reservoir suitable for CCS The production started at 1984.

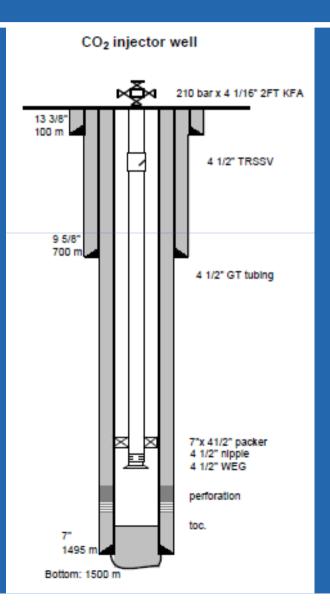

	Pl ₁ -3/1-K	Pl ₁ -3/2	Pl ₁ -3/3-II-K	Pl ₁ -5/1
GIIP [10 ⁶ m ³]	343,2	520,7	1400	570
Driving mechanism	small water	small water	small water	middle water
p _i [bar]	205	208,5	210,7	216,4
P _{12/31/2009} [bar]	62,5	38	41-47	85
Gp _{12/31/2009} [10 ⁶ m ³]	276	446,9	1211,6	360,3
Recovery factor [%]	80,4	85,8	86,5	63,2
Producing wells	1	1	2	0
Recoverable gas from 2010 [10 ⁶ m ³]	8,1	14,5	40,4	1
Average injecton rate[10 ³ sm ³ /well/day]	91	160	64,5	91

New injector wells Inflow Performance Relationships

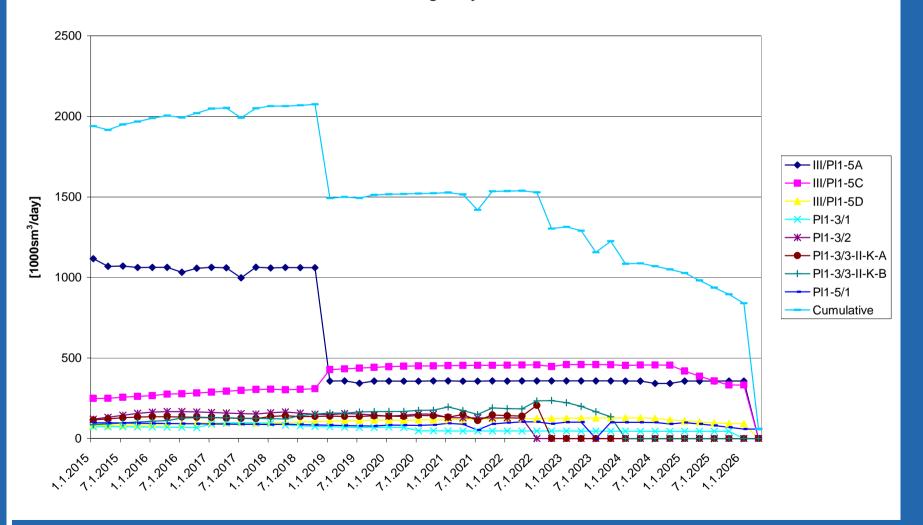

New injector wells – injection capacities Fracturing pressure

The fracturing pressure gradient is as follows:

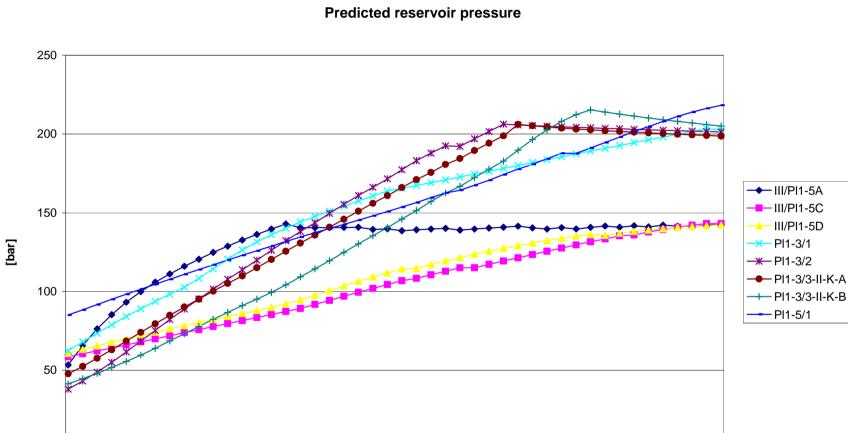
$$P = \Delta p + p$$


z = depth P = injection pressure needed to creat a fracture<math>p = reservoir pressure $S_z = vertical overburden pressure$

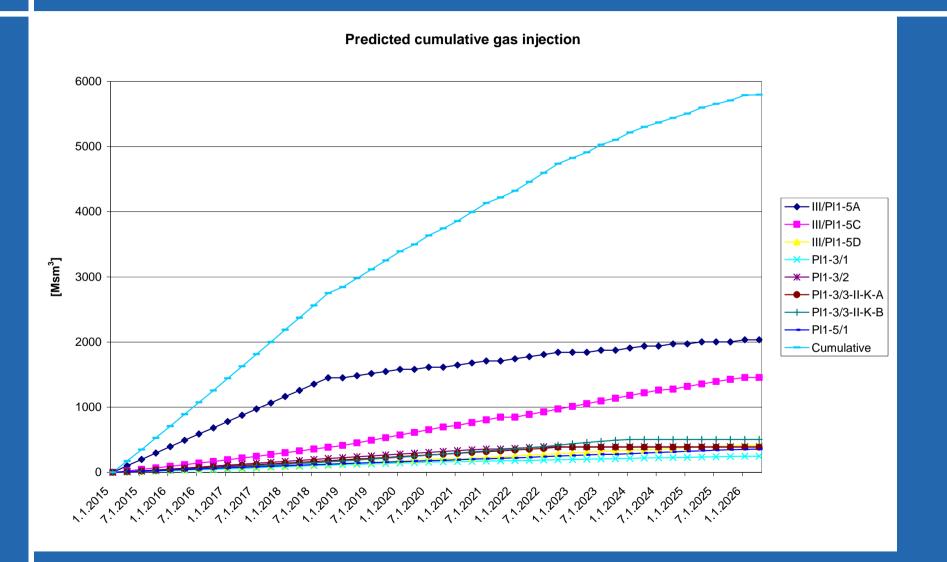
The maximum drawdown can be 40 bar, near the initial pressure 110 %.


New injector wells in our study

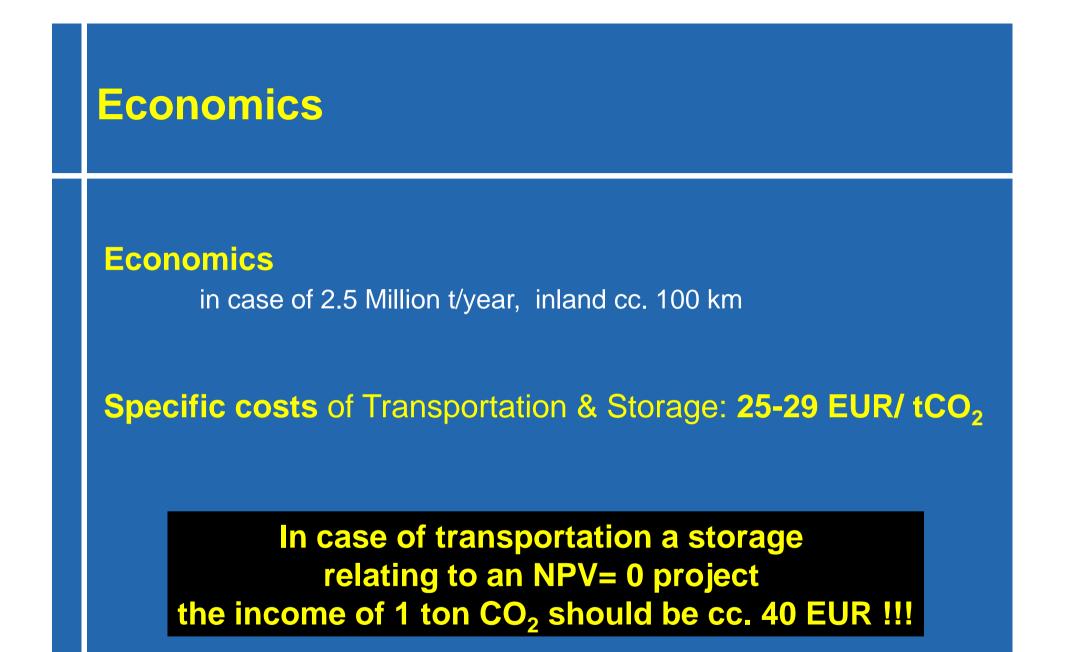
	Kisújszállás- Nyugat	Endrőd-III.
Well number	7-10	7-13
Tubing	4 1/2″	2 7/8″
Casing	7″	7″
Bottom [m]	1500	2100



Predicted gas injection rate



 $0 + \frac{1}{120} +$



Summary of our study

	Maximum Injection Rate	Injection well	Monitoring well	Injection time	Well head pressure
	Km³/day	pcs.	pcs.	year	[bar]
Kisújszállás-Ny	1500	9	4	9	85
Endrőd-III	600	7	5	11	80
Cumulative	2100	16	9		

Storage Potential

Less than 1 Million t/year capture capacity More than Explorations (3D, drillings, mugs) are needed for knowledge of aquifers

