

Innovative Applications For Stranded Barrels of Oil

Conference

Visegrád, 20 November 2014

Society of Petroleum Engineers

Role of seismic characterization in the revitalization of mature fields (example of Obod-Lacići oil field)

Igor Futivić Saša Smoljanović

THE MAIN GOALS OF SEISMIC STUDY

Seismic characterization study on Obod Lacići field resulted with segment of data that will be used in preparation of EOR project .

Main issue regarding fields suggested for EOR screening :

1. Fields covered with 3D seismic and exsisting sesmic interpretation which were not elaborated-in that case reprocessing and reinterpretation of seismic is required

- 2. Fields covered with 3D seismic without seismic interpretation
- 3. Fields that are not covered with seismic-proposing 3D seismic aquisition and interpretation of data

Mission:

Interpretation of 3D seismic, solving of structural-tectonic settings and seismic attribute analysis

Expectations:

new / revised geological models (maps) and analysis of seismic attributes to determine reservoir quality and potential hydrocarbon saturation

1. BASIC INFORMATION ABOUT OBOD-LACIĆI FIELD

2. REPROCESSING OF SEISMIC

3. SEISMIC REINTERPRETATION

4. SEISMIC ATTRIBUTE ANALYSIS

BASIC INFORMATION

1.

•discovered 1979. (Ob-10)

- •NE Croatia-Drava depression
- •reservoir is very complex with secondary porosity

(Badenian breccia and conglomerates and Mesozoic cataclased and fractured eruptive-sedimentary complex

Chronostrat. unit					Lithostrat. unit		Lithology		
Cenozoic	Neogene	Miocene	Upper Miocene	Upper Pannonian	Ivanić Form	-Grad ation		Legend:	
				L. Pannon.	Moslavačka gora Formation	Križevci Member			
			dle Miocene			Mosti Member			
			Mid				$\begin{array}{c} \hline \\ \hline $		
			Lower Miocene					~~~~~	
Mesozoic Paleozoic				c					

Marl

Sandstone

Calcite marl

Marly

sandstone/

sandy marl

Breccia and

conglomerate (siliciclastic detritus)

Breccia and conglomerate (carbonate detritus)

Limestone and dolomite

Schist

2.

REPROCESSING OF SEISMIC

Acquisition 1997

Processing from 1998 to 1999

Reprocessing 2008

+ 0 (00%) + 1 (28%) + 3 (34%) + 8 (38%) + 8 (30%) + 1 (88%)

++ 13 (25.8%) +- 18 (31.8%) +- 28 (0.8%) +- 28 (0.8%)

Primery 3--0 Sunt Index 1921/0 2008 2400 2500 2000 2700 2800 3900 3000 3100 3200

Obod-Lacići

3D SEISMIC INTERPRETATION0

0-28

SEISMIC ATTRIBUTE ANALYSIS

4.

- The method of multiattributes was developed in order to reduce ambiguity of each seismic attribute analysis.
- In reservoirs with secondary porosity established the existence of an inverse relationship amplitudes and saturation in the reservoir.
- multiattribute were the main aspect of seismic analyses
- Multiattribute as HC saturation indicator in this case is the product of RMS amplitude and instantaneous frequencies
- Seismic anomaly correspond to previous interpretation
- o/w contact fit to border of anomaly polygon
- Possible extension of reservoir Lacići 1a to the south part of field
- Possible reduction of reservoir Lacići 1 on the west part of field

CONCLUSION

- Seismic reprocessing allowed easier tracking of horizons during interpretation
- Interpreted horizons: Rs₇, top of rockfall breccia and top of eruptivesedimentary complex
- Interpreted complex tectonic-most valuable information for future EOR project in term of CO2 injection
- Extraction of seismic attribute provide information about lithology variation in breccias reservoir
- Combination of several attribute analysis point out better quality of reservoir characteristic in breccia