Linking Risk and Uncertainties to Field Development Planning In Challenging Environments

Stephen S. Kuo
BP plc
Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME
This year marks the 50th anniversary of the SPE Distinguished Lecturer program. Please visit our site to learn more about this amazing program.

www.spe.org/go/DL50
Linking Risk and Uncertainties to Field Development Planning In Challenging Environments

Stephen S. Kuo
BP plc
Outline

• Context

• A Systematic Approach for Risk and Uncertainties Assessment

• Activity Plan for Uncertainty Reduction and Contingency

• Field Development Planning Examples

• Summary
Complex Geology Coupled with Complex Development Scheme Means…

... hundred’s million barrels of reserve is required to justify the development
Too Optimistic or Too Pessimistic…?

Key to Resource Estimate:
- Hydrocarbon Initial In-Place (HIIP) Volume
- Recovery Factor/Recovery Mechanism
- Well Productivity

Needs to articulate risk and uncertainties to enable an informed decision by the key stakeholders.
Terminology

• **Risk**: An event (or set of circumstances) that, should it occur, would have a material effect on the final value of a project
 – Characterized by *description* of the event, *probability* of occurrence and *impact* if it occurs
 – Impact can be positive as well as negative

• **Uncertainty**: a range of possible values or outcomes, resulting from imperfect knowledge
A Systematic Approach

• Identify risks with a subsurface root
 – Risk ranking matrix
• Link risk to key subsurface uncertainties
• Assess impact of uncertainties
• Develop an activity plan
• Communicate
<table>
<thead>
<tr>
<th>Risk Description</th>
<th>Impact</th>
<th>Probability of Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbon In-Place - Fluid contact shallower than expected resulting in less than expected in-place volume</td>
<td>Low</td>
<td>Very Low: 1, Low: 2, Medium: 3, High: 4</td>
</tr>
<tr>
<td>Highly compartmentalized reservoir leads to rapid rate decline resulting in field plateau not delivered</td>
<td>Low</td>
<td>Very Low: 5, Low: 6, Medium: 7, High: 8</td>
</tr>
<tr>
<td>Weak aquifer support leads to rapid pressure decline resulting in reserve promise not delivered</td>
<td>Low</td>
<td>Very Low: 9, Low: 10, Medium: 11, High: 12</td>
</tr>
<tr>
<td>Poor reservoir quality in FB1...</td>
<td>Medium</td>
<td>Very Low: 13, Low: 14, Medium: 15, High: 16</td>
</tr>
<tr>
<td>FB2 has been severely depleted...</td>
<td>Medium</td>
<td>Very Low: 17, Low: 18, Medium: 19, High: 20</td>
</tr>
<tr>
<td>Southern Block has been depleted...</td>
<td>Medium</td>
<td>Very Low: 21, Low: 22, Medium: 23, High: 24</td>
</tr>
<tr>
<td>Perched water in FB3...</td>
<td>Medium</td>
<td>Very Low: 25, Low: 26, Medium: 27, High: 28</td>
</tr>
<tr>
<td>Exploration success...</td>
<td>Medium</td>
<td>Very Low: 29, Low: 30, Medium: 31, High: 32</td>
</tr>
<tr>
<td>Higher than expected drainage...</td>
<td>Medium</td>
<td>Very Low: 33, Low: 34, Medium: 35, High: 36</td>
</tr>
<tr>
<td>Sand production...</td>
<td>Medium</td>
<td>Very Low: 37, Low: 38, Medium: 39, High: 40</td>
</tr>
<tr>
<td>Wax and scale formation...</td>
<td>Medium</td>
<td>Very Low: 41, Low: 42, Medium: 43, High: 44</td>
</tr>
<tr>
<td>Water production...</td>
<td>Medium</td>
<td>Very Low: 45, Low: 46, Medium: 47, High: 48</td>
</tr>
</tbody>
</table>

Key to Risk Description: Cause & Impact

1. Mitigation (and Contingency)
2. Accept
Linking Risk to Uncertainties
(Hydrocarbon In-Place)

<table>
<thead>
<tr>
<th>Risk</th>
<th>Driver</th>
<th>Uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Well H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net Sand Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Continuity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GRV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pore Volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reservoir Base Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reservoir Top Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluid Contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net Pay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formation Thickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Sweep Efficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Productivity Index</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drawdown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drainage Efficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Well initial Rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Well Decline Rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery Factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net Rock volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net Pay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reservoir Top Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reservoir Base Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluid Contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net Sand Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Continuity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GRV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pore Volume</td>
</tr>
</tbody>
</table>

- Risk
- Driver
- Uncertainty (cannot be controlled)
- Decisions (can be controlled)
Linking Risk to Uncertainties (Compartmentalized Reservoir)

Risk
- Cost
- Resource
- Rate/Profile

Driver
- Opex Well
- Capex Well
- Drilling Schedule
- Recovery Factor
- Well Decline Rate
- Well Initial Rate

Uncertainties
- Step Out
- Drilling Time
- Rig Availability
- Compartmentalization
- Well Placement
- Drainage Efficiency
- Area Sweep Efficiency
- Displacement Efficiency
- Cut-off Efficiency Energy
- Drawdown
- Pressure
- Step Out
- Drilling Site Location
- Well Trajectories
- Well Placement
- Compartmentalization
- Faulting
- Fractures
- Production Well Count
- Heterogeneity
- Energy Displacement Efficiency
- Fractures
- Fault Location
- Fracture Connectivity
- Fracture Pore Volume
- Complex Wells
- Multi Lateral Wells
- Well Type
- Fault Transmissibility
- Fault Location
- Fracture Connectivity
- Fracture Pore Volume

Legend
- Risk
- Driver
- Uncertainty (cannot be controlled)
- Decisions (can be controlled)
Impact on HIIP

In-Place Volume = \(\text{area} \times \text{thickness} \times \text{ntg} \times \text{struc. uncert.} \times \text{por} \times \frac{1 - \text{Sw}}{\text{FVF}} \)

Deterministic

Probabilistic

Identify key parameters that have material impact
Impact on Dynamic Performance

Run a set of simulation cases using one-at-a-time change (parametric) or experimental design for reduced number of cases (statistical)
Impact on Well Productivity

Skin
Perm, md
Thickness, ft
Viscosity, cp
Bo, rb/stb

PI (stb/d/psi) or Well Rate (mbd)
Deterministic Case Description

Deterministic Model Description

<table>
<thead>
<tr>
<th></th>
<th>Downside</th>
<th>Base Case</th>
<th>Upside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Rock Volume</td>
<td>Downside NRV map with LKO</td>
<td>ML NRV with ML OWC</td>
<td>Max NRV with ML OWC</td>
</tr>
<tr>
<td>Structure</td>
<td></td>
<td>Tied to Wells</td>
<td></td>
</tr>
<tr>
<td>Porosity, Swi, Boi and GOR</td>
<td>Average from all wells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquifer volume</td>
<td>2x HCPV</td>
<td>4x HCPV</td>
<td>12x HCPV</td>
</tr>
<tr>
<td>Faulting</td>
<td>Worst Case</td>
<td>Base Case</td>
<td>Open</td>
</tr>
<tr>
<td>Sand connectivity</td>
<td>Heavy Baffles</td>
<td>Medium Baffles</td>
<td>Light Baffles</td>
</tr>
<tr>
<td>Horizontal Permeabilities</td>
<td>0.75x</td>
<td>1x upscaled Kx</td>
<td>1.5x</td>
</tr>
<tr>
<td>Kz/Kx multiplier</td>
<td>0.001x</td>
<td>0.1x</td>
<td>0.5x</td>
</tr>
<tr>
<td>Relative permeability</td>
<td>Low Rate</td>
<td>Base</td>
<td>High Rate</td>
</tr>
<tr>
<td>BHP, psia</td>
<td>High</td>
<td>ML</td>
<td>Low</td>
</tr>
<tr>
<td>Oil Viscosity, cp</td>
<td>MAX</td>
<td>ML</td>
<td>MIN</td>
</tr>
<tr>
<td>Water Injection Scheme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Injection target, mbd</td>
<td>0</td>
<td>32.5</td>
<td>64.5</td>
</tr>
</tbody>
</table>

“Deterministic” case so that its outcome can be related to actual performance
Deterministic cases vs. probabilistic outcome

Mapping deterministic cases to probabilistic outcome

- Un-risked Recoverable Resource (Probabilistic)
- Risked Recoverable Resource (Probabilistic)
- Reference Case
- Deterministic Sen. Cases

Plateau Length, Year

Recoverable Resources, bcf
Data Acquisition: key for reducing uncertainties

Well #1 → Well #2 → Well #3 → HC in Deep Sand

Success

Well #4 → Well #5

Failure

Well #4

Deep Sand Evaluation

• Res. Access
 - UMA5-10 (Sec.)
 - MMH10
 - LMH10/20/30
• Data Acquisition
 - Core (LM)
 - Static P
 - Fluid Samples
 - Logs+OBMI
• Flow Test
 - Test after Completion
• Interference test
• Issues
 - Depo Model
 - Res. Conn.
 - Fluid Prop
 - Is Ref case is a downside?
 • If so, re-evaluate Well #3 location

• Res. Access
 - UMA5-10 (Sec.)
 - MMH10
 - LMH10/20/30
• Data Acquisition
 - Core (MM)
 - Static P
 - Fluid Samples
 - Logs+OBMI
• Flow Test
 - Test after Completion
• Interference test
• Issues
 - Depo Model
 - Res. Conn.
 - Fluid Prop
 - Is Ref case is a downside?
 • If so, re-evaluate Well #3 location
• If Successful
 - Complete in LMH30/40
• If Failed
 - Compete in LMH30 & LMH20

Resource Evaluation

• Res. Access
 - UMA5-10 (Sec.)
 - MMH10
 - LMH10/20/30
• Data Acquisition
 - Static P
 - Fluid Samples
 - Logs+OBMI
• Key driver for this well
 - MMH10 reserves
 - LMH20 reserves
• Timing
 - Risk of drilling into depleted zone

2nd Well for Deep Sand

• Res. Access
 - UMA5-10 (Sec.)
 - MMH10
 - LMH10/20/30
• Data Acquisition
 - Core (LMH40)
 - Static P
 - Fluid Samples
 - Logs+OBMI

Late Time Side Tracks f/Dev. Wells

• Un-drained resources separated by faults in
 - MMH10
 - LMH10/20/30

Resources with no risk

Resources with Risk

Late Time Side Tracks f/Dev. Wells
Linking Uncertainties to Surveillance (Activity Plan)

<table>
<thead>
<tr>
<th>Key Risks/Uncertainties</th>
<th>Impact</th>
<th>Surveillance Activities</th>
<th>When will know</th>
<th>Contingency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil-in-Place (Static)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand thickness</td>
<td>High</td>
<td>Logs evaluation and pressure/fluid sampling</td>
<td>Pre-drilling</td>
<td>1) Openhole sidetrack from development wells</td>
</tr>
<tr>
<td>Fluid Contact</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery Factor (Dynamic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquifer strength</td>
<td>High</td>
<td>1) Interference test and/or pressure buildup after start-up</td>
<td>6 m after 1st oil</td>
<td>1) Pre-invest water injecting system, but drill water injector later</td>
</tr>
<tr>
<td>Faults/Compartmentalization</td>
<td>High</td>
<td>2) Surface and downhole P/T monitoring after start-up</td>
<td>6 m after 1st oil</td>
<td>1) Drill additional well or sidetrack, including high-angle or horizontal well across faults</td>
</tr>
<tr>
<td>Sand continuity/Facies Description</td>
<td>High</td>
<td>3) Logs evaluation</td>
<td>Pre-d & 6 m after 1st oil</td>
<td>1) Alternate geological model 2) Inter-well connectivity test 3) Plan for infill drilling</td>
</tr>
<tr>
<td>Well Productivity and Injectivity (Dynamic)</td>
<td>Medium</td>
<td>1) Well test 2) Well performance evaluation</td>
<td>After 1st oil</td>
<td>1) Routine well test 2) Plan for well intervention program</td>
</tr>
</tbody>
</table>

Allow sufficient time for reservoir surveillance
Compartmentalized Reservoir

- **Risk**: Small compartment leads to rapid rate decline resulting in field plateau not delivered
- **Uncertainties**: Reservoir Connected Volume and Faults
- **Mitigation**: Reservoir Surveillance, Interference test, etc.
- **Contingency**: Plan for additional well
- **Risk Exposure in $$$**
Aquifer Strength

- **Risk**: Weak aquifer support leads to rapid pressure decline resulting in reserve promise not delivered
- **Uncertainties**: Aquifer size and connectivity

- **Mitigation**: Reservoir surveillance before injection starts
- **Contingency**: *Pre-invest* water injection system (space, weight allowance & slots), but install plant & drill wells only if surveillance shows lack of aquifer support
- **Risk Exposure in $$$**
Fluid Presence

- **Risk:** Fluid contact shallower than expected resulting in less than expected in-place volume
- **Uncertainties:** Hydrocarbon in-place volume

![Diagram](image)

- **Mitigation:** Plan development well to penetrate shallower known reservoir on the trajectory
- **Contingency:** Side-track updip for production
- **Risk Exposure in $$ $$
Summary

• A systematic approach to rank risks and assess uncertainties is discussed

• Linking risks to uncertainty parameters so that their impacts are assessed and understood

• It is important to communicate risk and uncertainties to key stakeholders so that an informed decision can be made

• Several examples on risk mitigation and contingency planning are presented
Key Take-away

• Keep it simple, only focus on key uncertainties that have material impact

• Evaluate and understand their impacts

• Link uncertainties to surveillance

• Define a few deterministic cases so that actual performance can be related to predicted outcome
Acknowledgements

• SPE Foundation for support of the Distinguished Lecturer program

• BP management for professional recognition and permission to participate in the SPE DL program

• BP colleagues who provided support to part of the work presented

• Local SPE chapters worldwide for hosting the presentations
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation.

Click on: Section Evaluation
Thank You