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The Attraction .... _D
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Big Data Analytics Game Changer

large volumes of data
about subsurface, physical
infrastructure and flows

Actionable
information

New insights about reservoir from
“data mining” can help increase
operational efficiencies



The Possibilities .... D
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_ Finding hidden patterns
Exploration Bl e r

Using real-time and historical Data Mining
data to predict potential failures

Predictive Reservoir
Maintenance Management

|dentifying factors for

Extracting knowledge improved performance

from unstructured data

Text Proxy

Creating fast “emulators”
from physics-based models

Processing Modeling

Reduce cost, improve productivity, increase efficiency
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Big Data Analytics — What & Why? %

Data Analytics
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Velocity B__4d Variety

nderstand better
“what does decisions
Examine data say”

data
Prediction

Learning

Data Analytics (aka Machine Learning, Data Mining) helps understand
hidden patterns and relationships in large, complex datasets




Scope of Big Data and Analytics @
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V Data Organization & Management

| & data collection, warehousing, tagging, QA/QC,
normalization, integration and extraction

Analytics & Knowledge Discovery

|  software-driven analysis, predictive model
building, and extraction of data-driven insights

Decision Support & Automation

e rule-based systems with functionality to support
collaboration and scenario / risk evaluation

Source: IDC Energy Insights



Data Analysis Cycle

4

Data Collection and Management
— Combine data from multiple sources
— Clean and prepare data
— Make data easily available for analysis

Exploratory Data Analysis
— Better understand relationships
— Formulate questions

Predictive Modeling
— Explicitly model relationships
— Use models to answer the questions

Visualization and Reporting

— Summarize what has been learned
— Transfer information to decision makers

— Identify new data to collect

Data Collection
and Management

2

Exploratory
Data Analysis

Visualization
and Reporting
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Predictive
Modeling
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Why Machine Learnlng? D@
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* Benefits of machine learning:
— ldentify hidden patterns in data

— Capture non-linear relationships

between variables Fitting models to data

— Avoid explicitly defining variable
transformations Assessing quality of fit

— Automatically handle correlation
between predictors Identifying key variables

— Guided/automated tuning of model

 Some degree of interpretability
lost due to model complexity
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How to Fit Models: D

SPE DISTINGUISHED
LECTURER"

Regression & Classification Tree
Random Forest
Gradient Boosting Machine
Support Vector Machine

Artificial Neural Network

Multidimensional interpolation considering
trend and autocorrelation structure of data

Gaussian Process (Kriging)

10



How to Assess Quality of Fit?

Metrics
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How to Identify Key Variables?

* |dentification of variable
importance can be model
specific (e.g., for RF, GBM)

* Model independent metric
based on R?-loss

— [R? for full model] minus [R? for
model without predictor of interest]

— larger R>—loss = greater influence

Anisotropmy
Fatio (kv _kh)

Injection
Rabe (Qinj)

Cap Rock
Porosily (phiCR)

FOESErair
Pososity (phiR)

Cap Rock
Perm. (RCR_mD)

Mean Resheo
Perm. {(<kR=>_mD}

Perme Layer
Arrang. (kR

Cap Rock
Thickness (WCR)

Resersoir
Thickness (hiR)
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Example Applications

* Regression = Explaining production from shale oil wells in
terms of completion and well attributes

* Classification = ldentifying advanced log outputs (e.g.,
v/s zones) using basic well log attributes

* Proxy modeling = Fitting statistical response surface to
mimic output of full-physics model (reservoir simulator)

14



Example [1] — Key Factors Affecting
Hydraulically Fractured Well Performance
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° Wolfcamp Shale Field Description
horizontal wells
Opt2 Categorized operator code
— Data from 476 Wells COMPYR Well completion year
— Goal @ Fit M12CO ~ SurfX, SurfY Ge.ographlc location
) AZM Azimuth angle
f(12 pFEdICtOFS) TVDSS True vertical depth (ft)
— Multiple machine e el
i LATLEN Total horizontal lateral length (ft)
Iearnmg methods STAGE Frac stages
— Model validation + FLUID Total frac fluid amount (gal)
) i PROP Total proppant amount (lb)
variable |mp0rtance PROPCON  Proppant concentration (Ib/gal)

Schuetter, Mishra, Zhong, LaFolette, 2018, SPEJ, SPE-189969-PA
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Variable Importance Multiple Models D
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Using R?-Loss Metric Fitted and Validated = "+

RF 10-Fold CV Predictions RF Prediction on Full Training Dataset
Imputed Well Data Imputed Well Data
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KM 10-Fold CV Predictions KM Prediction on Full Training Dataset
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Classification Tree Analysis to Identify
Factors Driving Extreme Outcomes T

PROP< 1_|.405e+06

= [Q] What separates top

25% from bottom 25% of Top 25%: Not
. . too shallow,
producing wells in terms hot too deep,
of well productivity? long lateral
with more
proppant, but
" Accu racy. not too long

_LATLEN< 2756 TVDSS1=-8100

TVDSS*=-8294
Bottorh 25% LATLEN>=5362
8/2
Bottom 25% Top 25%

7/3 12/58

Bottom 25%

Top 25%

Bottom 25% Top 25%
21/2 6/15

Total

17



Example [2] — Vug Detection from Proxies

e Vuggy zones create high-
permeability pathways in
carbonate rocks

e Generally identified from
cores and image logs

* Challenge: Identify vuggy
zones from well-log response
(PEF, GR, NPHI, RHOB)

e Approach: Use machine
learning for classification

Mishra, Howat, Schuetter, Haagsma, 2018, in preparation
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Synthetic Vug Log from Model Fitting and !
Triple Combo Data Validation Process D,
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Actual Vugs Predicted Vugs (CV)

o0 02 04 06 08 10 oo 02 04 06 08 10

Correct ID

Rate
Well #1 0.721
Well #2 0.675
Well #3 0.748
Well #4 0.820
Well #5 0.767
Well #6 0.885
Well #7 0.733
Well #8 0.604
Well #9 0.810
Well #10 0.820

Held Out Well

19




Mapping Vugs in Multiple Wells and
Correlating to Well Injectivity
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Example [3] — Statistical Proxy Modeling
for Reservoir Simulation

Goal = Fit fast/accurate
response surface to output
of full-physics model

Problem = CO, injection
into deep saline aquifer

9 uncertain inputs

— Reservoir and caprock k, h, ¢
— q, k,/k,, k-layering

Storage
Reservoir

3 responses (Esi RCOZ' Pan)

Schuetter and Mishra, 2015, SPE 174905
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Comparing Designs (Discrete Model Run Points) D
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« BB common statistical design -

- Maximin LHS (MM
AR ALIL G ' LHS (MM) number of runs ™ for n>10
inputs sampled sampling using

using -1, 0, +1 Edugnicbonlgiins  Higher granularity and space-
| filling properties for MM design

* More flexibility for model fitting
with MM (beyond quadratic)
— Kriging — MARS — AVAS
— Also RF, GBM, SVM, ANN etc.

97 sample BB and MM designs for 9 factors

22



Comparing Model Performance D
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Total Storage Efficiency

Box Behnken — Maximin LHS— Maximin LHS— Maximin LHS -
Quadratic Kriging MARS AVAS

=
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Determination (R?)

o

H Full Model Cross-Validation

Better model fits with Maxmin LHS designs (more flexibility)
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. Finding hidden patterns
Exploration Yol e r e

Using real-time and historical Data Mining
data to predict potential failures

Predictive Reservoir
Maintenance Management

|dentifying factors for

Extracting knowledge improved performance

from unstructured data

Text Proxy

Creating fast “emulators”
from physics-based models

Processing Modeling
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The Role of Electrofacies, Lithofacies, and |

Example [1] Hydraulic Flow Units in Permeability ———
p I Prediction From Well Logs: D
erezetai. A Comparative Analysis Using A

SPERE April 2005 Classificatfion Trees

Hector H. Perez,” SPE, and Akhil Datta-Gupta, SPE, Texas A&M U., and §. Mishra, SPE, Intera Inc.

e Classification tree
analysis for identifying NPHILD 085
rock types from basic
GR=<31.765 MNPHI40.135

well log attributes
* Accounting for missing ﬂm _GR<21.205

well logs

DT<53.525 log10.LLD<1.73055R<30.17

4
* Application for . ‘
permeability prediction a o :

in Salt Creek field

25



Example [2] SPE-171003-MS
5h€”€y et al_ Understanding Multi-Fractured Horizontal Marcellus Completions

Robert Shelley, Amir Nejad, and Nijat Guliyev, StrataGen; Michael Raleigh, and David Matz, Epsilon Energy u

SPE'171003, 20 14 USA, Inc.

* |dentifying performance
drivers and completion
effectiveness for Marcellus
shale wells

w
m
o
)
9
o

* Predictive model using ANN
(Artificial Neural Networks)

As Completed No of Predicted No of Mo of Frac Stages: No of Frac Stages:
= = Frac Stages: 10 Frac Stages: 10 15 15
¢ RO I e Of d Iffe re n t Va rl a b I e S u Peak Gas 204,557 203,061 282,190 318,832
[ Y Change [ [ 39% | 7%
| t d Proppant Mass (Ib) 6,117,532 6,117,532 6,117,532 9,176,298
eva U a e Fluid Volume (bbl) 116,832 116,832 116,832 175,248

26



Example [3]
Guerrilot et al.
SPE-183921, 2017

* Building proxy model for
synthetic reservoir using
simulator output

e 6 facies each with 3 fitted
parameters (9, k;,, k,)

* ANN proxy model better
than kriging and quadratic
versions for history match

* Probabilistic forecasts

SPE-183921-MS

Uncertainty Assessment in Production Forecast with an Optimal Artificial

Neural Network

D. R. Guérillot, Texas A&M University; J. Bruyelle, Terra 3E

= Simulation vs Proxy:1983-12-31 00:00:00.000 i
3800000 3840000 3880000 3920000 3960000 4000000 4040000 4080080
O wfemtaid R R VLAY P RACE] RN PO \ Ak PR VELT WD bk ©

S 2,

1 et 2
o e o
S

Liquid Production Volume, [sm3]
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3800000 3840000 3880000 ‘ ._\tl 00 H.FI.' ‘ 4000000 R 4040000 7 4080000
Liquid Production Volume, [sm3]
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Example [4] SPE-184062-MS

Revealing Patterns within the Drilling Reports Using Text Mining Techniques
Arumugam et al' for Efficient Knowledge Management

S P E - 1 840 6 2 ) 2 O 1 6 Sethupathi Arumugam, Sanjay Gupta, Biswaranjan Patra, Shebi Rajan, and Satyam Agarwal, Infosys Limited

* Processing of daily drilling

data to |dent|fy d ri | | | ng - Drill, Directional Drill, Connections
) s increased, observed excess drag,
anomalies / best practices | ,_ observed fresh cuttings

— Information retrieval

— Conversion to structured data | . Drill, maintained
. ROP/WOB/Torque, No caving
— Clustering Drill, tight spot, tank stopped observed, Good hole cleaning,
increasing, losses in trip tank, rare No vibrations
— Pattern identification cavings, over pulled, observed torque,

drags observed
— Knowledge Mmanagement

28



OTC-26275-MS

Example [5]
Big Data Analytics for Predictive Maintenance Modeling: Challenges and
Santos et al. Opportunities

I. H. F. Santos, M. M. Machado, E. E. Russo, D. M. Manguinho, V. T. Almeida, R. C. Wo, M. Bahia,
OTC'26275, 20 14 and D. J. S. Constantino, Petrobras; D. Salomone, M. L. Pesce, C. Souza, and A. C. Oliveira, EMC - Brazil
Research Center; A. Lima, J. Gois, L. G. Tavares, T. Prego, S. Netto, and E. Silva, PEE-COPPE / UFRJ.
Building prognostic

classifier for specific
turbogenerator failures

during startup

Data from offshore facility
— extraction of fuel
burning related features

RUSBoost and RF models

Multi-fold validation
approach for evaluation Validation Set

Average Test Accuracy
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One Model .... or Many?

Is there a preferred technique?

LECTURER"
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Power of Ensemble Modeling
No single technique is

consistent best performer

ModelAverage —— Average Train Rsq = 0.982 -- Average Test Rsq = 0.909

Often, multiple competing
models have equally good fits

Aggregate models = robust
understanding & predictions

Pick “Forest” over “Trees”

31



The Past is Prologue .... Or Is It?
What to expect in forecasting?
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* Flow in petroleum reservoirs typically transitions from one
regime to another (e.g., transient - boundary dominated)

Normalized Productivity Index Versus Material Balance Time (Log-Log Format)
(Mid-Continent Gas Well)

1 01 0
Legend: Mid-Continent Gas Well
@ (am(p)fqg) Function

With a physics-based model,
multiple scenarios can be
generated with assumptions

x
@
T
=
>
£
2
=
o
3
=
o

(Am(p)igg), ((psia’icp)(MSCF/D)

Normalized P

With a data-driven model,
only the past (transient) trend can
Material Balance Time (6,/dq).hr be extrapolated into the future

(first-order approximation — not material balance pseudotime)

Palacio et al., 1993, SPE 25909

e Data-driven models constrained by what is in the data

32



7 Challenges in Data Analytics

Framing the problem
Data quality check
Feature selection
Meta-learning
Cross-validation
Variable Importance

Learning from unstructured data

Reduce cost
Improve productivity

Increase efficiency

33



Looking Ahead %
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 Machine learning applications in oil & gas rapidly growing
— exploration and production - digital oil field management

— predictive maintenance - natural language processing

e Significant potential for data analytics to provide useful insights
(data = information = knowledge = wisdom)

e Petroleum engineers and geoscientists need better understanding
of data science fundamentals + applicability + limitations

34
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Your Feedback Is Important

Enter your section in the DL Evaluation Contest by
completing the evaluation form for this presentation
Visit SPE.org/dl
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