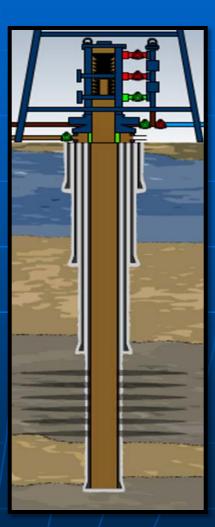


Long Term Well Integrity

Visegrád, 20 November 2014 Roeland Verbakel, Schlumberger

Society of Petroleum Engineers


Agenda

- **1. Objectives of Well Cementing**
- 2. Threats to compromise Cement Integrity
 - a) Pressure and Temperature fluctuationsb) Corrosive Fluidsc) HPHT environments
- 3. Solutions

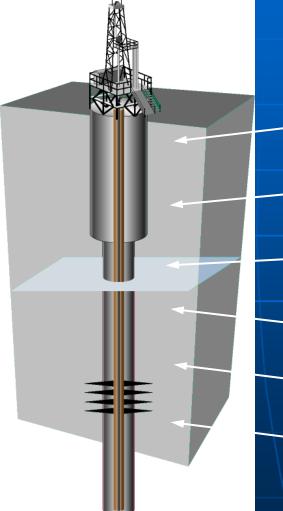
4. Case Histories in Hungary

Objectives of Well Cementing

- Zonal Isolation
- Support for casing strings
- Protection of casing
- Protection of borehole

Threats to Cement Integrity

Pressure / Temperature fluctuations



HPHT environment

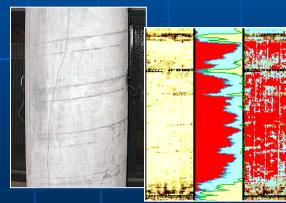
Pressure and Temperature Fluctuations

-Gas injection

Temperature changes in upper casings during production

Pressure changes: drilling, production

Permanent well abandonment


Formation changes/tectonic activity

Well[•]completion/perforation/stimulation

Concerns

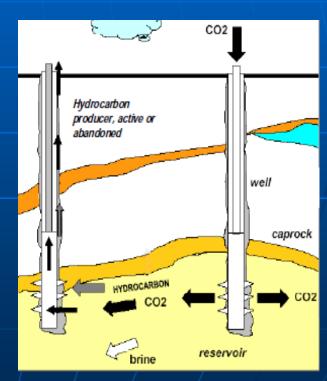
Pressure and temperature changes during:

Drilling
Production
Stimulation

Micro annulus; Cement cracks

Well completio n/stimulati on **Sustaine**

d Casing


Pressure

Corrosive Fluids

When ?

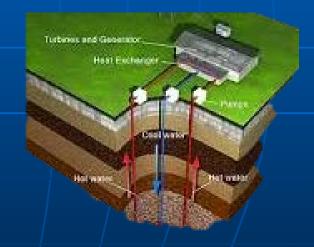
Immediately after contact with fluid

Where ?
• CO₂ and H₂S environment
• CO₂ storage wells
• EOR CO₂ injector wells

Degradation of Portland Cement

Degradation in CO2 environment:
 Step 1 - Carbonic acid diffusion
 Step 2 - Dissolution/Carbonation
 Step 3 - Leaching
 Corrosion of casing

Gas inflow


1 week

6 weeks

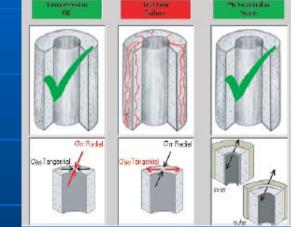
HPHT Environments

When ? Temperature > 150 degC • Pressure > 10,000 psi Where ? Deep wells Geothermal wells Overpressured wells

HPHT Cementing Challenges

What ?

- Strength retrogression
- Negative impact on slurry rheology and thickening time
- Cement sheath cracks due to stresses
- Narrow Frac and Pore pressure margin
- Possible inflow of formation fluids


Engineered solutions P/T changes

a) Pressure and Temperature Fluctuations

- Software simulation & analysis of stresses:
 - Input: given ΔP and ΔT cycles
 - formation properties
 - casing size and weight
 - cement slurry properties

Output: - plots of stresses

- location and time of (evtl.) failure
- sensitivity analysis of different parameters
- Cement system with tailored mechanical properties:
 - Flexibility of set cement (low Young's Modulus)
 - Expansion of set cement

Solutions for corrosive environments

Density

Temperature

1.90 SG

130 C

b) Corrosive Fluids

- Cement system with:
 - Low permeability and low porosity
 - Long term stability under CO₂ exposure

1.50 SG

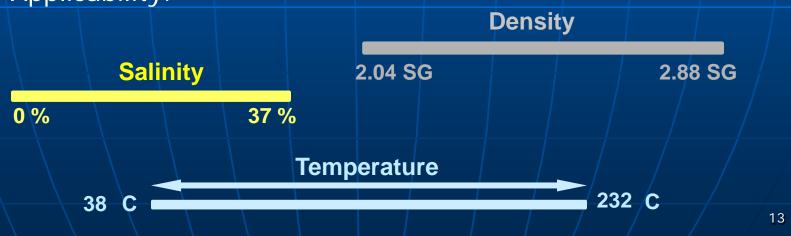
Computer-controlled reactor for testing

20 %

40 C

• Applicability:

Salinity


0 %

Solutions for HPHT environments

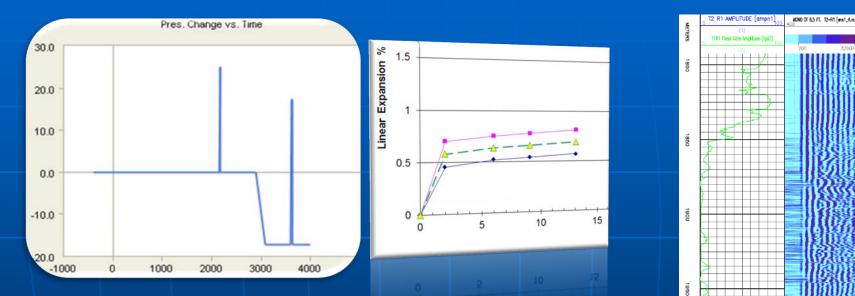
c) HPHT environments

- Software simulation & analysis of stresses
- Flexibility properties of set cement
- Cement system with excellent flow properties even at high densities
- Applicability:

Job: 7 inch casing Year: 2013 Depth: 2860 m MD / 2804 m TVD BHST: 155°C

Challenges:

- HT environment
- > Post cementing ΔP due to press. tests, mud (1.6 SG) \rightarrow water swap


Risks.

Microannuli and cracking of cement sheath

Solutions:

- Cement system with tailored flexibility properties of set cement
- HT expanding agent and tests
- Software analysis of stresses causing microannuli and/or cement fractures

Analysis and Results:

Conventional system:

- Young's Modulus 12,000 MPa
- No expansion

Innovative system:

- Young's Modulus 2,900 MPa
- Expansion

15

Job: 7 inch casing Year: 2014

Challenges:

CO2 bearing formation

Risks.

- Degradation of cement
- Corrosion of casing
- Gas migration

Solutions:

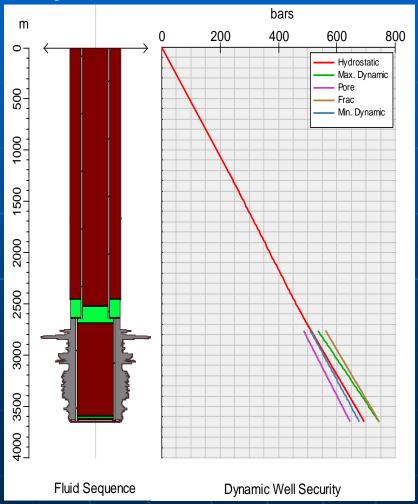
- CO₂ resistant cement system as Tail slurry
- Conventional cement slurry as Lead slurry
- Gas migration control additives

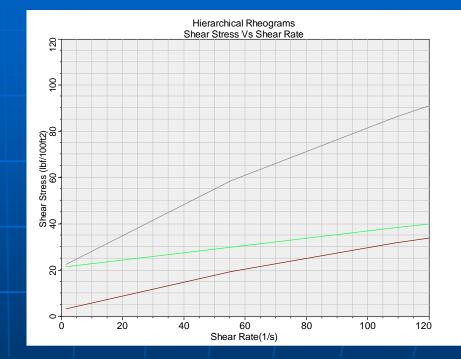
Depth: 1105 m MD / TVD BHST: 70°C

Job: 7 inch liner Year: 2013 Depth: 3650 m MD / 3588 m TVD BHST: 153°C

Challenges:

- HPHT environment (MW = 1.90 kg/l)
- Salt environment
- > Post cementing ΔP due to press. tests, mud \rightarrow water swap (-238 bar)


Risks:


- Undesired reaction of cement slurry with salt
- Microannulus and cracking of cement sheath

Solutions:

- Salt saturated high density cement slurry (2.1 kg/l) / spacer (2.0 kg/l)
- Software analysis of stresses causing microannuli and/or cement fractures
- HT expanding agent

Analysis and Results:

