

HUNGARIAN PRODUCTION SIMPLIFICATION
IMPORTANCE AND POWER OF INFROMATION HAV

SURFACE FACILITIES DEPARTMENT E&P

Péter Takáts Visegrád

16th Nov. 2017

AGENDA

- Find the right approach
 - ▶ Big picture first then → detailed analisys
 - Data availibility
 - ► Time → present future
- ► Key objetvie(s) → unit cost
- ▶ How can we achieve the goal(s)

$APPROACH \rightarrow PICTURE$

Think

Assess

Select

Define

Implement

3 Independent Production Regions was identified:

Identified 8 key (mainly gas) facilities as assemblies in the system:

- Kiskunhalas main gath. station
- Szank gas plant
- Üllés plant
- Algyő plant
- Kardoskút plant
- Endrőd plant
- Füzesgyarmat mein gath. station
- Hajdúszoboszló plant

West HUN

- Mid HUN

- South-East HUN

Most complex and difficult system

>1200 km long pipline network

Most fields, plants and facilities (crude and gas) are in the system

Provide the biggest part of the HUN production ~35k boepd

- gas production 58%
- crude production 18%

New 2H gas standard regulation critical for this region

Area age average 50 yrs.

$APPROACH \rightarrow PICTURE$

Think Select Define **Implement** ▶ East - South of Hungary OIL & GAS PRODUCTION NETWORK Gas sales Gas fields: - Hp-i-S - Ebes CONT. Léta - Álmosd - Földes Hajdúszoboszló the same Plant 100 mm - Berú Gas fields: - Nagykereki Komádi - Mezőpeterd - Körös - Furta - Zsadány VA BIKE Oil fields: - Mezősas - Sas-W Füzesgyarmat Crude sales - Szeghalom Main Gath. - Komádi-W station - Kaba Gas fields: Gas fields: - Tűrkeve - Szank Endrőd plant - Endrőd - Ruzsa-N - Csólyos-E - Endrőd-N Mezősas field - Kömpöc-S - Mezőtúr Sas-W field - Kkmajsa-S Gas fields: - Eresztő - Soltvadkert - Forráskút - Borota Szarvas gas filed - Jh-Új Oil fields: Komádi VA - Kiha-S - Szank-NW - Kiha gas - Szank-W Regional Gas sales - Tázlár-N Oil fields: - Bugac Kardoskút - Kiha-NE-N plant Crude sales - Kiha-NW Szank Main Crude sales Gas fields: - Öttömös Gath. via pipeline - Algyő GC - Öttömös-E station Gas fields: - Ferencszállás - Pf-Békés - Associated gas - Tótkomlós Tázlár Kiskunhalas Pszőlős Oil fields: field Main - Békés-S Szank Plant Algyő Gathering (oil and - Mezőhegyes - Ruzsa gas) station ATATA. - Ásotthalom Oil fields: - Asotthalom-N Legend - Mezőhegyes - Forráskůt Gathering Station - Medgyesbodzás KTD_mezokozi - Móraváros Funkció - Mezőhegyes-W Üllés plant Algyő Plant (oil and gas) Mezőbeni vezeték Battonya Gas Injection plant Sales via pipeline

$\mathsf{APPROACH} o \mathsf{PICTURE}$

Think Assess

Select

Define

Implement

FGSZ Sales point Currently not active

> Condemate from Filesogyamut DR800

PFT-3 Oil Gathering Static

Sales gas mixing unit P=15-19 bar Max Capacity: 60k m3/h Actual capacity: 25k m3/h

Water Disposal Max Capacity 65 mSh Actual Capacity 50 mSh

Generate specific cost at every places for: Crude handling/Emulsion breaking

Crude processing (stabilization)

Water handling and re-injection

HC transportation/delivery/storage

Pressure boosting (gas-liquid) by stages

Gas conditioning (dehydration, HC dew-point)

Gas processing (NGL recovery)

Gas sweetening (H2S, CO2 removal)

Take consideration Minor CAPEXs as operation related cost

APPROACH -> DATA AVAILABILITY

Think Assess Select Define Implement

All Required Data Will Be Shared but...

- What Is The Current Status Of Data Availability?
- How To Deal With Areas Of No Data?
- How To Refine The Quality Of Currently Existing Data?
- How to make managerial decisions upon areas of poor data?
- What is the cost of obtaining sufficient data, of good quality?

Legend	
	Not Available
	Low Quality Data available
	Medium Quality Data available
	Data available

APPROACH → DATA REQUIREMENTS

Think Select Define Implement Assess

6	Production related CAPEX-OPEX		
a.	CAPEX (main overhauls, preventive maintenance)		
b.	OPEX (Variable and Fix costs)	Available but, Breakdown of OPEX Costs need clarity	Available but, Breakdown of OPEX Costs need clarity
7	Production flow-rates by wells		
8	Availibility, condition and performance of major equiment		
9	Capacity assessments (Pipelines, facilities)		
10	Sales requirments and prizes (crude, gas, different NGL products)		
11	Unplanned shut-downs		
12	Environmental releases		
a.	Emission environmental reports		
b.	Spill frequency and size		
13	3rd party commitments		
14	Emission limits (GHG, etc.)		
15	NGL Price Forecast		We can use primises
16	Hungary Taxation System		
17	ABEX		
18	MOL Management Fee		
19	Equipment No		
20	Equipment of State Requirement	Need to clarify	Need to clarify

Think Select Define Implement Assess

Gas conditioning plant capacity:

Compressor capacities:

Crude handling capacity:

Water handling capacity:

OBJECTIVES

Think

Assess

Select

Define

Implement

Develop short and long term "strategies" to optimise utilisation of existing (surface) Production Systems to achieve unit production cost below the **given threshold** and enhance value considering:

- 1. Future Production Potential:
 - Exploration opportunities,
 - (Un)/planned developments,
 - Ongoing optimisation initiatives/activities, and
 - 3rd party contracts / committments
- 2. Future Regulatory Requirements:
 - New EU gas quality standard (H₂S, CO₂, DewPoint)
 - Emission limits (GHG)

- Maximize system capacities
 - **Expedite field developments**
- Unused Ullage + high opex
 - **Time Expedite decommissioning**
- Identify bottlenecks (2H gas standard, sour gas contents, water handling, etc.)
 Debottleneck with new equipment or salvage from elswhere
- Determine strategy/concept (road map) for production system development
- Keep flat or reduce unit cost through variable (energy) and fix (maintenance) cost

STUDY GOALS -> VALUE PREPOSITION

Think Select Define Implement Assess

Short/Long	Value
	Having a tool MODEL for checking the existing operations in SE Hungary (Accurate information database)
Short/Medium	Options for Process Simplification.
Term Goals	Possible maintenance of Unit Cost (Capacities, maintenance optimization & 3 rd Party Services)
	Eliminating the Bottlenecks & increase the reliability of the system
Long Term Goals	Support the strategic decisions (CAPEX, Decommissioning, ABEX, well focused on decision making)
	Similar model launch at OpCos, lessons learned WS.

HOW TO ACHIEVE THE GOALS

ACHVIEVE GOALS -> FIND THE TOOL

Think Implement Select Define **Assess**

ACHIEVE GOALS → PROCESS

Think > Assess Select Define > Implement

- ► Integrated model which can optimize entire system and minimize unit cost taking into consideration OPEX / CAPEX / ABEX / Exploration / Development potentials
- MOL will perform the process and hydraulic models of all facilities and pipelines starting with Algyő area
- Develop a method for how drivers and indicators to be prioritised and captured in the integrated model?
- ► Establish mechanism for how the technological (process and hydraulic) and econonomic (cost, cash flow) models will be integrated
- ► All possible realistic combinations of scenarios and prioritise the top scenarios & opportunities for define phase

ACHVIEVE GOALS → INTEGRATED MODEL

Think Implement Select Define Assess 6 partly & i she tua Figure 1986 **Technical Model** Endergrade. Kelk arburas/N gank/Sancy/Alig 50 Ppelice(s). West in Fields/gather yn/Karduscid/ $\hat{g}_{i}^{2} \in \mathbb{N}$ ing stations. January Mayer Week gyunnint/9njd. 2040-2 usabases. Control Association Special Make Everal, kinindeli Lance Samples Maximise pred, value Minimise costs **Economic Model** Labelly LN/ Mc93 i ant 19. C ART K/OPEX/ASTX) N/8800 No work Nethania Cost Madel \$ 780% (), APEX/OPEX/ABLX).

ACHVIEVE GOALS → SCENARIOS

Think > Assess > Select > Define Implement

- Definition and plan of action for top ranked scenarios from Select stage
- Validation Of Results
- Initiate And Develop Optimization and Simplification Projects

THANK YOU! **QUESTIONS?**