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Agenda

Stimulation Challenges

Completion Selection for the Reservoir
Introduction to Matrix Stimulation

Overview of Matrix Design Process

Case Study 1: Damage ldentification/Acid Design
Case Study 2: Stimulation Placement
Introduction to Fracturing (Focus on Acid Frac)
Case Study 3: Acid Fracturing



Stimulation challenges ...

» Maximize the NPV on well drilling and
completion investment

e Increase hydrocarbon
production rate

e |ncrease the reservoir
economical life and reserves

s Stimulation for reservoir management

e Efficient drainage of laminated
formations

e Delaying the onset of water
production

e Sand control

= Provide highly conductive flowpath
= Bypass near wellbore “damage”
e Ease in hydrocarbon drainage

= Modify flow regime deep within the
formation (tens to hundreds of feet)




The Resource Shift

Economics Reservoir Engineering

Matrix Acidizing
Increased
Integration of

Disciplines
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Reservoir Impact on Completion Selection
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Reservoir Impact on Completion Selection
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Reservoir Impact on Completion Selection
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Matrix Stimulation

= Injection of a Treatment Fluid (Acid or Chemical) to Dissolve,
s Disperse or Bypass Near Wellbore Damage

708

Carbonate Treatments Sandstone Treatments
Create New Flow Paths Remove Damaging Agent



Overview of Matrix Acidizing Design
Process

Determine If candidate Is appropriate for Matrix Acidizing

Determine the damage mechanism: Drilling/Scale —
Organic/Inorganic

Select the appropriate acid type:
HCI/Emulsified/Organic/Mud Acid/Clay Acid

Design Appropriate acid Coverage: gal/ft of formation/fluid
penetration

Ensure effective fluid placement: mechanical+chemical

Consider pre/post treatment flushes to enhance main acid
treatment and improve cleanup

Compare designed treatment with actual results and use
lessons learned for subsequent treatment.



Case Study 1: Damage Identification

and Acid Design

Well-1 and Well-2 are
offset wells 150m apart

BHST—80degC

Lithology: Laminated
Clean/Dirty Carbonate

Low permeability, low
porosity

Low API oil gravity

Iron species evident from
core/cuttings analysis

other
minerals
. . 0
(m) calcite dolomite i
carbonates
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Case Study 1: Design Comparison

Well-1

Aggressive Acid formulation
NOT designed to mitigate clay
and Iron content.

Pre-flush, Acid formulation
and Post-flush NOT designed
for low API oil gravity

Potentially damaging
polymer-based diverter acid
applied

Excessive fluid volumes
applied for pre-job injection
diagnostics

Well-2

Comprehensive analysis of
formation lithology and fluids
w. lab testing

Acid formulation optimized
with chelants and organic
acids to prevent and suspend
degradation products

Pre-flush, Acid formulation
and Post-flush designed with
mutual solvent to maximize
stimulation efficacy

Polymer-based acid removed.
Fluid volumes optimized
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Case Study 1: Stimulation Results

Well-1

Interval Y
No Effect of Acid
No improvement of injection

Well-2

Interval Y

New Acid Design results in
significant pressure
reduction

Production from stage

results in cancellation of
additional stimulation
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Case Study 2: Offshore Gulf

Highly fractured, tight
carbonate

®<0.05, k<0.01mD

BHST = 290degF

Formation Depth —4000m
Formation thickness —250m
Lateral Length —350m

Historical Stimulation Approach
e CT conveyed stimulation
e Low pump rates, low acid volumes

New Stimulation Approach
= Multi-Stage Completion System
e High rate Matrix, high acid volumes
» Fiber-laden Diverter
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Formation Complexity

Case Study 2: Stimulation Placement

Selective Completion
Improper placement i

exuberates
heterogeneity
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Case Study 2: Understanding Formation
Complexity

= A total of 6 fracture intervals are identified
from micro formation image

= Sonic identifies as OPEN Fractures at

. {7 o v ?
i1

= Sonic borehole acoustic reflection
used to identify fractures
extending into the formation
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Case Study 2: Completion Design
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Case Study 2: Fluid Selection

s Combination of chemical and mechanical diversion
s Promotes uniform stimulation of fractured carbonate formations

Cumulative leak-off mass vs time at constant
pressure P = 20 psi

Fiber Laden
Acid

: g2 = 3.9 ml/min

 wall building : stabilized flow
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Case Study 2: Project Impact

m  Well Results

= “We are of course very pleased with these results...” - Executive
Chairman

= Significant change in Field development plans
e Restimulation of existing wells
s Production facility at max. capacity



Hydraulic Fracturing

s A Reservoir Treatment Performed to Create a High
= Conductivity Path from the Reservoir to the Wellbore

Propped Frac - Sandstones Acid Frac - Carbonates



Acld Fracturing

Acid Is injected above fracturing
pressure
= A hydraulic fracture is created

Acid non-uniformly dissolves and etches ~
carbonate fracture faces

= Highly conductive acid-etched channels ‘
remain open after fracture closes

] : , )  Open
= No risk of screen out (risk with prop fracs) acid-etched
Length of etched fracture Chafr;nels
= Determined by acid type, volume, frzctirre
strength, closure
leakoff parameters, reaction rate and
Injection rate (
Effectiveness determined by
= Fracture length ‘

= Fracture conductivity *Acid frac:

Stochasitic, Formation
dependent



General Reguirements for Acid
Fracturing

Carbonate formations

= Not applicable in sandstone formations
= HCI, even HF, will not adequately etch sandstone fracture face

= Materials (fines) released through dissolution can plug the fracture

Cleaner Limestone and Dolomite formations

= Dirty carbonate rocks (< 70% solubility in HCI) are poor candidates
= Acid etched channels may be impaired
» Release of insoluble material may plug the channel

Competent rock

= Conductivity can deteriorate over time

= Soft formations unable to retain conductivity after closure

= Chalk formations are generally not suitable:

Connectivity vertically across interval

= Reservoirs with horizontal sterilities (e.g., anhydrite) can compromise
vertical connectivity of conductivity



Limits of Acid Fracturing

s Kinetic limit:
= Upper limit for depth of acid penetration
= Dependent on reaction kinetics

s Fluid loss limit: T 1t 1

Leakoff
o -

= Lower limit on depth of acid penetration _ -
= Negatively affected by wormhole formation —

= Conditions for differential etching C°”d;‘g}:§§
= Rock heterogeneity can create differential etching “channels”
= Can be enhanced by viscous fingering
= Dominated by reactivity ! (generally overlooked) Urealfesalven

rock serves as
“pillars”



Aclid Fracturing Challenges

BHP control using conventional diverter

Treating Pressure
Annulus Pressure
Bottomhole Pressure |
Slurry Rate

Fracturing Pressure
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Fiber and VES — Self Diverting Acid

Cumulative leak-off mass vs time at constant
pressure P = 20 psi

i . o AR S Fiber
3 - i X Laden Acid
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Z 4 4 f |
' 'l Sl > i wall building_ ! stabilized flow
. . ’l
Live VES Acid i ) T

—

Time, min

simulation flud + fioers Dual leakoff control with MaxCO3 Acid:
- - 1. Fibers bridging in natural fracture/wormhole
2. High viscosity VDA provides :
:  Larger fracture width to reduce
Area/Volume and increase spending time.
* VDA viscosity upon spending behind the
fiber cake, thus decreasing spurt loss
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Case Study 3: Acid Fracturing with Fiber

Laden Acid

s Well X

e Open hole
horizontal

e Multi-stage
completion (3
stages)

e Stage 1: 3/9ft Frac-Port 1 |
open-hole length |
| ]

Full story in:

J.L. Jauregui (Saudi Aramco) et al., SPE 142512 —

Successful Application of Novel Fiber Laden Self-Diverting Acid
System during Fracturing Operations of Naturally Fractured

Carbonates in Saudi Arabia




Case Study 3: Treatment Schedule

HCI Spearhead /
Breakdown <.

Treatment Schedule

k pillludlulivils Pump Stage Fluid
S N = I

: Flber-!aden s Stage Name Rate Volume
BAD : Acid *: (bbl/min)

""""" CROSSLINKED 35 LB GEL
EMULSIFIED ACID
CROSSLINKED 35 LB GEL
Main Acid ) Diverting System (75#)

CROSSLINKED 35 LB GEL
3 EMULSIFIED ACID
LY CROSSLINKED 35 LB GEL
MaxCO3 it | Diverting System (75%)
Acid P T ] CROSSLINKED 35 LB GEL
“ * : - -
»* EMULSIFIED ACID
Main Acid _|.* . g -

—— | Diverters | 400 |
Mechanical diversion for
multi-stage T O TR
— -
—n
w100 | wWee | e | 0|

Repeat
(~3-4 times)

Repeat for each zone of interest

Overflush
. 4
Flush

* Stages can be added if needed per treatment design




Case Study 3: Pressure plot
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Fiber Laden Acid leads to pressure increase of ~3100psi at constant injection

rate
The entire treatment remains above fracturing pressure, propagating the
fracture




Case Study 3: Fiber Laden Acid Vs
Conventional Diverters

Conventional Conventional Conventional Fiber Laden Fiber Laden
diverter diverter* diverter™ Diverter Diverter

Porosity

Conventional Diverter
Conventional Diverter+Low conc. Fiber
Polymer Free Diverter+High conc. Fiber

Fig. 5 — Direct offset wells mineralogy, stress gradient porosity permeability profile and perforated intervals position.

Full story in:
T. Bukovac (Schlumberger) et al., SPE 160887 —
Stimulation Strategies to Guard against Uncertainties of Carbonate Reservoirs



Case Study 3: Treatment Outcome:
Comparison

Treatments Performance Comparison

m kh norm.

Productivity Index
(scfd/psi-2/md.ft)

Fiber Laden

Fiber Laden Diverter

Diverter

kh norm. Post
Frac Gas Prod.
(MMscfd /md.ft)

kh normalized Post Frac
Production or Pl

Fiber Laden

Stimulation Fluids Volume Design Comparison
Diverter

Lca =" Fiber Laden
. - . == = LCA Diverter
| ' Bia-
A B C D =

« Normalized post-frac gas production has increased of 40%

« Diverter volume is now 20% of total acid volume
(compared to 45% in conventional treatments)

 445gal/ft of acid, vs 720 gal/ft in conventional treatments

PAD
M Total Acid
M Diverter

Pay (bbl/ft)

Fluid Volume per Net




Case Study 3: Reducing Job Size,
Increasing Efficiency.
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On —50 wells in Saudi Arabia,
Fiber Laden Acid enables reducing significantly the fluid volumes

Clean-up period dropped on average from 4.7 days to 2 days




Conclusions

Stimulation Challenges
Completion Selection for the Reservoir

Requirements of Effective Matrix & Acid
Frac Stimulation

Stimulation Efficacy Dependent™ on:

e Damage ldentification/Acid Design

e Stimulation Placement

e Fluid Loss Control (Acid Fracturing)

“not exclusive, other factors can impact efficacy
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Questions?
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