

The application of advanced techniques of Formation Evaluation, integrated with core analysis: improve gas field R&D in the Pannonian Basin.

> Society of Petroleum Engineers SPE HUN Workshop Budapest 11/19/2009

INTRODUCTION

This presentation will show an example of best data optimization from a Deep well (*Case A*) drilled in unconventional reservoir part of Pannonian basin

All these informations can contribute to:

- Optimal well position
- Minimize environmental risks
- Identify best target for well completion
- Maximize production
- Field deployment

Integration with other data services like geological assistance and coring, validate and support all above FE data collected, processed and analyzed

SUMMARY

Field history and geological descriptionFE data available

- WL logging
- Geological Master Log
- Core analysis data
- FE logging analysis and interpretation
- COMPOSITE PLOTS of integrated services
 - FE Logging
 - WL analysis comparison with CORE data
 - MREX fluid characterization and quantification
 - Acoustic and Image In-Situ stress analysis
 - RPM in OH : Inner vs. Standard Fe data / GasViewtm
- Conclusion: results on full integrated analysis

Field History and geological description

- Area is a depositional sequence at the base of the delta slope of lower pannonian turbiditic section (Bekes basin)
- Reservoir is clean Sandstone with good porosity range (22-28%) (Szalonta Fmt.) laying upon basal marl (Endrod Fmt.)
- Well is located to enter reservoir in its best structural position (conventional reservoir)
- Current Gas production is 78400 m3/day with 13.2 m3/day condensate (from 2008 MOL Expl. & Dev. update report)

^{*}J.L.Clayton, I.Koncz – Geochemistry of natural gas and carbon dioxide in bekes basin..

FE logging data

TARGET: Lower Pannonian Formation (Szalonta/Endrod Fmt.)

General Well Information:

Max. Inc.: 1.9°
Max Temp: 105.6° C downhole
Mud Prop.: WBM, MW: 10 ppg, Salinity: 41.8 g/l Cl⁻
Rm @ BHT: 0.065 Ω/m @ 104.5° C

BHI WL Logging program:1. HDIL/XMac-F1/WGI(Resistivity/Acoustic/Borehole profile)2. ZDL/CN/DCBIL(Density/Neutron/Circumferential Image log3. MREX/DSL(NMR/Digital Spectralog gamma ray)4. RPM/GR(Pulsed Neutron/ Gamma ray) in open hole

- Local Geological services
- CORING data

FE logging analysis & interpretation

FE evaluation

- Composite plot importing core and mudlog gas shows
- Comparison with core data
 - Porosity
 - Permeability
- MREX fluid characterization and quantification
- XMAC
 - Slowness determination (high resolution 0.5 ft)
 - Cross waveform (Acoustic anisotropy)
- CBIL Image analysis
 - Comparison anisotropy and in situ stress
- RPM in open hole (gasview analysis and porosity)

Composite Plots: core & gas data integration

Comparison with core data: Output Description:

MR porosity measurement is

- A direct measurement that is sensitive only to the fluids present in the rock pores
- Independent of rock matrix and mineralogy

NMR – Porosity Model

Oriented Object Acquisition mode (OOA)

PoroPerm + Gas

Porosity
Permeability
Quantify & characterize gas
& light oil (< 1 cp)

 $\begin{array}{l} \bullet \phi_{t}, \ \phi_{e}, \ CBW, \ BVI, \ BVM, \ k_{NMR} \\ \bullet T_{2}, \ T_{1}, \ D \\ \bullet HI_{g'} \ \rho_{g'} \ S_{g,xo'} \ 2DNMR \ imaging \end{array}$

Field Deliverable

- CBW, BVI, BVM, fe, ft, and kNMR
- Porosity distribution based on chosen cutoffs such as: CBW 3 ms and BVI 33 ms
- kNMR based on Coates equation with chosen C, m, and n
- Underestimation of BVM, fe, ft and kNMR in gas zones if HI effect is significant
- T2 spectra for long and short TW and the differential spectrum
- Highlights intervals with gas in the flushed zone due to insufficient polarization of gas with short TW

MREX: Superior hydrocarbon typing

- Innovative NMR acquisition (OOA) techniques provide comprehensive NMR data for thorough fluids analysis
 - T₁, T₂ & Diffusion data acquired simultaneously while logging

2D NMR plots identify and quantify hydrocarbons

- Available from all hydrocarbon typing Objective Oriented Acquisitions
- Acquired as continuous logs (NOT stationary measurements!)
- T1/T2 contrast used as Gas indicator (R_T2 method)

XMAC: In-situ stress analysis

- High resolution slowness derived
- Well/reservoir direct options
 - Acoustic shear anisotropy
 - Borehole image log
 - The Best option
 - Combining Imager & shear anisotropy!

CBIL: In-situ stress analysis

OH RPM logging: FE & Vol. data comparison

OH RPM logging: GasViewtm quantification

Case A: Gas evaluation using RPM FE data

OH RPM logging: GasViewtm quantification

Case A: Gas evaluation using WL tool FE data

Conclusion: results on full integrated analysis

- FE basic logging might not be enough to characterize fluids and optimize completion program (ex. borehole shape, geomechanics, free fluid saturation)
- Core data generally still as reference for porosity/permeability
- N/A or invalid core data might be replaced by high tech tool and petrophysics in short or longer time, depending on service
- NMR advanced technique can help identify:
 - Gas Saturation
 - Correct Total / Effective porosity by gas effect and be alternative to Neutron Porosity
 - Establish Gas diffusion also in water filled pore spaces
- In-situ stress and rock mechanical analysis from acoustic might help preventing incorrect well planning and other effects (es. Sand production, borehole stability)
- In-situ stress and mechanical analysis from IMAGE logging integrates with acoustic geomechanical analysis to highlight stress directions (es. Break-outs)
- RPM-C in Open Hole logging
 - Data QC showed good response in good hole condition but generally borehole washouts compromised correlation
 - Verification on porosity emulation was based with core, post-processed data as offsets
 - Vshale from RPM in good correlation with Vshale from petrophysical analysis
 - Preferable, in case of open hole application, to run it again in CH to check Sg validity and others (ex. invasion profiles)
 - RPM does not replace OH tools but can be an option (very slim holes, no radioactive uses etc. etc.) to provide fluid saturation analysis

Well is completed in 2 intervals and producing 78400 m3/day gas + 13.2 m3/day cond.

