The application of advanced techniques of Formation Evaluation, integrated with core analysis: improve gas field R&D in the Pannonian Basin.
This presentation will show an example of best data optimization from a Deep well (Case A) drilled in unconventional reservoir part of Pannonian basin.

All these informations can contribute to:

- Optimal well position
- Minimize environmental risks
- Identify best target for well completion
- Maximize production
- Field deployment

Integration with other data services like geological assistance and coring, validate and support all above FE data collected, processed and analyzed.
SUMMARY

- Field history and geological description
- FE data available
 - WL logging
 - Geological Master Log
 - Core analysis data
- FE logging analysis and interpretation
- COMPOSITE PLOTS of integrated services
 - FE Logging
 - WL analysis comparison with CORE data
 - MREX fluid characterization and quantification
 - Acoustic and Image In-Situ stress analysis
 - RPM in OH: Inner vs. Standard Fe data / GasView™
- Conclusion: results on full integrated analysis
Field History and geological description

- Area is a depositional sequence at the base of the delta slope of lower pannonian turbiditic section (Bekes basin)
- Reservoir is clean Sandstone with good porosity range (22-28%) (Szalonta Fmt.) laying upon basal marl (Endrod Fmt.)
- Well is located to enter reservoir in its best structural position (conventional reservoir)
- Current Gas production is 78400 m³/day with 13.2 m³/day condensate (from 2008 MOL Expl. & Dev. update report)

*J.L. Clayton, I.Koncz – Geochemistry of natural gas and carbon dioxide in bekes basin..
FE logging data

- TARGET: Lower Pannonian Formation (Szalonta/EndrodFmt.)

- General Well Information:
 - Max. Inc.: 1.9°
 - Max Temp: 105.6° C downhole
 - Mud Prop.: WBM, MW: 10 ppg, Salinity: 41.8 g/l Cl⁻
 - Rm @ BHT: 0.065 Ω/m @ 104.5° C

- BHI WL Logging program:
 1. HDIL/XMac-F1/WGI (Resistivity/Acoustic/Borehole profile)
 2. ZDL/CN/DCBIL (Density/Neutron/Circumferential Image log)
 3. MREX/DSL (NMR/Digital Spectralog gamma ray)
 4. RPM/GR (Pulsed Neutron/ Gamma ray) in open hole

- Local Geological services

- CORING data
FE logging analysis & interpretation

- FE evaluation
 - Composite plot importing core and mudlog gas shows
 - Comparison with core data
 - Porosity
 - Permeability
- MREX fluid characterization and quantification
- XMAC
 - Slowness determination (high resolution 0.5 ft)
 - Cross waveform (Acoustic anisotropy)
- CBIL Image analysis
 - Comparison anisotropy and in situ stress
- RPM in open hole (gasview analysis and porosity)
Composite Plots: core & gas data integration

Case A
Comparison with core data: Φ and K

Good agreement between MREX permeability and core permeability

Discrepancy between rhob from densilog and rhob from core analysis

Good agreement between Neutron/Density porosity and core porosity

Although there is no detailed mineralogical description, the reservoir was considered as a standard sandstones, mainly quartzite, with a quite low percentage of calcite or heavier minerals.

So it could be reasonable to assume its grain density close to 2.65-2.67, as normally assumed in petrophysics.

The responses of neutron/density/MREX are mutually consistent with this assumption.

The core density data are not mutually consistent (different measurement system and environment).
MR porosity measurement is
- A direct measurement that is sensitive only to the fluids present in the rock pores
- Independent of rock matrix and mineralogy

NMR – Porosity Model

Oriented Object Acquisition mode (OOA)

PoroPerm + Gas
- Porosity
- Permeability
- Quantify & characterize gas & light oil (< 1 cp)

MREX: fluid characterization and quantification

- MR porosity measurement is
 - A direct measurement that is sensitive only to the fluids present in the rock pores
 - Independent of rock matrix and mineralogy

- NMR – Porosity Model

- Oriented Object Acquisition mode (OOA)
MREX: fluid characterization and quantification

Field Deliverable

- CBW, BVI, BVM, fe, ft, and kNMR
- Porosity distribution based on chosen cutoffs such as: CBW 3 ms and BVI 33 ms
- kNMR based on Coates equation with chosen C, m, and n
- Underestimation of BVM, fe, ft and kNMR in gas zones if HI effect is significant
- T2 spectra for long and short TW and the differential spectrum
- Highlights intervals with gas in the flushed zone due to insufficient polarization of gas with short TW
MREX: fluid characterization and quantification

MREX: Superior hydrocarbon typing

- Innovative NMR acquisition (OOA) techniques provide comprehensive NMR data for thorough fluids analysis
 - \(T_1, T_2 \) & Diffusion data acquired simultaneously while logging

- 2D NMR plots identify and quantify hydrocarbons
 - Available from all hydrocarbon typing Objective Oriented Acquisitions
 - Acquired as continuous logs (NOT stationary measurements!)
 - \(T_1/T_2 \) contrast used as Gas indicator (\(R_1/T_2 \) method)
MREX: fluid characterization and quantification

Overall Case A overview
XMAC: In-situ stress analysis

- High resolution slowness derived
- Well/reservoir direct options
 - Acoustic shear anisotropy
 - Borehole image log
- The Best option
 - Combining Imager & shear anisotropy!

Case A
CBIL: In-situ stress analysis

Case A

Break-out
OH RPM logging: FE & Vol. data comparison
Case A: Gas evaluation using RPM FE data

<table>
<thead>
<tr>
<th>FLUID</th>
<th>GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GAMMA</th>
<th>Gas Saturation</th>
<th>GAS FLARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>33860</td>
<td>13000</td>
<td>0</td>
</tr>
<tr>
<td>33800</td>
<td>13000</td>
<td>0</td>
</tr>
<tr>
<td>33800</td>
<td>13000</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EFFECTIVE POROSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAND</th>
<th>EFFECTIVE POROSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

OH RPM logging: GasView™ quantification
Case A: Gas evaluation using WL tool FE data
Conclusion: results on full integrated analysis

- FE basic logging might not be enough to characterize fluids and optimize completion program (ex. borehole shape, geomechanics, free fluid saturation)
- Core data generally still as reference for porosity/permeability
- N/A or invalid core data might be replaced by high tech tool and petrophysics in short or longer time, depending on service
- NMR advanced technique can help identify:
 - Gas Saturation
 - Correct Total / Effective porosity by gas effect and be alternative to Neutron Porosity
 - Establish Gas diffusion also in water filled pore spaces
- In-situ stress and rock mechanical analysis from acoustic might help preventing incorrect well planning and other effects (es. Sand production, borehole stability)
- In-situ stress and mechanical analysis from IMAGE logging integrates with acoustic geomechanical analysis to highlight stress directions (es. Break-outs)
- RPM-C in Open Hole logging
 - Data QC showed good response in good hole condition but generally borehole washouts compromised correlation
 - Verification on porosity emulation was based with core, post-processed data as offsets
 - Vshale from RPM in good correlation with Vshale from petrophysical analysis
 - Preferable, in case of open hole application, to run it again in CH to check Sg validity and others (ex. invasion profiles)
 - RPM does not replace OH tools but can be an option (very slim holes, no radioactive uses etc. etc.) to provide fluid saturation analysis
- Well is completed in 2 intervals and producing 78400 m3/day gas + 13.2 m3/day cond.
We thank the operators for the data release & the audience for your participation!