# Pistinguished Lecturer Program

Primary funding is provided by

# The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME





# Understanding Liquid Loading Will Improve Well Performance



# Example of Successful Deliquification Program



# Purpose

#### Address the following question:

Can complex well geometries affect liquid loading characteristics and well performance?

# **Terminology**

- Critical velocity
- Critical rate
- Static liquid column
- Terrain slugging
- Severe slugging
- Vertical Flow Performance
  - VFP Curves
  - Nodal Analysis

# **Analysis Techniques**

- Vertical flow performance curves
- Critical velocity
- Production graphs
  - Rate vs Time
  - Pressure vs Time
- Flowing pressure surveys
- Acoustic survey

# Complications

- Tubing set high above perforations
- Long completion intervals
- Complex well geometries
- Problem recognition

# **Production Data**



### **Pressure Data**



# Critical Rate Vertical Flow Performance



# Tubing on Bottom vs Tubing Set High



# Vertical vs Slant Well Geometry



# **Unloading Velocity**

- Equation derived for vertical well
- Developed from terminal fall velocity
  - Liquid density
  - Gas density
  - Largest liquid droplet
- Frequently termed "critical velocity"

# **Turner Unloading Velocity**

$$v_c = 1.5934 \left[ \frac{\sigma(\rho_l - \rho_g)}{\rho_g^2} \right]^{0.25}$$

Without ±20% adjustment Coleman Equation

#### where

```
\rho_g = gas phase density, lbm/ft<sup>3</sup>
```

 $\rho_L$  = liquid phase density, lbm/ft<sup>3</sup>

 $\sigma$  = surface tension, dynes/cm

 $v_c$  = critical velocity of liquid droplet, ft/sec

# Turner Unloading Velocity

$$v_c = 1.5934 \left[ \frac{N_{we}}{30} \right]^{0.25} \left[ \frac{\sigma(\rho_l - \rho_g)}{\rho_g^2} \right]^{0.25} \frac{\left[ \sin(1.7(90 - \theta)) \right]^{0.38}}{0.740767}$$

$$\frac{\left[\sin(1.7(90-\theta))\right]^{0.38}}{0.740767}$$

Belfroid et al SPE 115567 Angle Correction

where

= gas phase density, lbm/ft<sup>3</sup>

**Turner Adjustment** 

= liquid phase density, lbm/ft<sup>3</sup>  $\rho_L$ 

= surface tension, dynes/cm

 $N_{we}$ = Weber Number (use 60 for original Turner)

= hole angle (Deg from vertical)  $\theta$ 

= critical velocity of liquid droplet, ft/sec

# Well Angle Modification to Turner



## **Evaluation Point**



Dtbg = 2.441 in

 $\gamma_g = 0.65$  SPE 120625

## Assorted Well Profiles



#### **Complex Profiles**

- Vertical
- Build & Hold (Slant)
- S-Shaped
- Horizontal

 Complexity increases velocity or rate to unload well

# Example Critical Velocity Profiles



- Effects on critical velocity
  - Pressure
  - Temperature
  - PVT
    - Gas gravity
    - Water salinity
  - Hole Angle

# Example Critical Rate Profiles



- Effects on critical rate
  - Pressure
  - Temperature
  - PVT
    - Gas gravity
    - Water salinity
  - Hole Angle
  - Pipe Diameter

#### **Vertical Well Case**

(Variable Tubing Size)



# Liquid Loading

**Bottom of Vertical Well** 



# Liquid Loading

**Bottom of Vertical Well** 



Gas-cut
Liquid

Droplets
variable
size
distribution



### Static Liquid Column Pressure Profile





# Complex Horizontal Well Profiles



#### Barnett Shale Horizontal & Vertical Wells



#### Vertical vs Horizontal Well Attrition



# Liquid Loading at 86° from Vertical

4-in Pipe

Stratified flow pattern

# Liquid Loading at 86° from Vertical



Liquid accumulation at gas velocity less than critical

# Liquid Loading at 86° from Vertical



Onset of terrain slugging

# **Example Horizontal Well**



# **Example Horizontal Well**



- Velocity profile
- Gas velocity
  - Comparison with critical velocity
- EOT at 25°
  - Shallow
  - Slugging in curve
  - Slugging in horizontal

## **Factors Affecting Rate-Time Decline**



# Example of Successful Deliquification Program



# Example of Successful Deliquification Program



#### **Possible Solutions**

- Velocity management
- Compression
- Foamers
- Artificial lift

#### Observations

- Complex Geometries require High Critical Velocity
- Proper Liquids Management offers significant benefit
- Liquids Management restores / maintains well productivity
- Liquids Management requires constant attention
- Determine Critical Velocity / Rate thru-out well
- Nodal Analysis offers insight to Long Term Performance

# Questions?

# Distinguished Lecturer Program

# Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation:

Click on: Section Evaluation



