

South-East Europe E&P Sector

Bilogora Gas Field Production System

- From Scratch to the Final Concept -

S. Buti, Z. Mršić / November 2009.

S. Buti, Z. Mršić/November 2009.

Bilogora field

Bilogora Oil Field

> 1972. Oil Production Start-Up, Gas Lift

 > 2002. Gas Production Testing in Three Wells
One well ---- 16% CO₂ 35 ppm H₂S

- > Question:
 - Possible rates ?
 - How to gather and process ?
 - Where and how to transport ?

Two Options

Well BI-82 (CO₂ 16 %) – to gas gathering station (25 km), other 2 wells to existing gas lift system

 Commingled production through existing gas lift system with rate constraint of well BI-82

The Decision

> Option 2:

Produce through gas lift system

- Lower investment
- Higher recovery due to lower dp
- Lower initial rates
 - BI-82 rate constraint; so total CO₂ content is within approved limits

The Idea

Connect gas wells to gas lift system:

- Phase I; pwh > 50 bar
 - Build TEG gas dehydration system and use gas for gas lift
- Phase II; pwh< 50 bar
 - Gas production through low pressure gas lift pipeline
 - Booster compressor?

The good news

- More wells...
 - Different reservoirs, different well characteristics
 - Some wells connected to GS, some not
 - No CO₂

From The Beginning...

Find the way to test wells through the existing oil gathering system without flaring

- > A lot of pipelines:
 - Found Ex looping pipeline,

 Minor Reconstructions to get free pipeline for temporarily wells' testing

The Task

Get the information on rates, pressures and possible problems:

- Hydrates formation
- Sand production
- Liquid production
- Wellhead pressure trends
- Do the well testing, evaluate reservoirs
- Impact on oil producing wells
- Test the existing pipelines capacity and pressure drops
- Build the concept of future gas gathering system
- Rebuild the IPM model

We have defined...

> Number, length and size of pipelines needed

Number and type of vessels needed:

- TEG gas dehydration of HP wells
- Free Water Knock Outs for wells producing liquid
- On site Water and Condensate Tanks for distant wells
- Electricity to each well
- Pumps for chemicals injection

Production System Schematic Raspored plinskin busotina polja Bilogora i E

Lessons learned

Gas production can be tested through oil producing installations

Oil production drop at Bilogora – up to 25% for increase in p_{sep} from 3 to 5 bar

IPM results - a key parameter for production system design

The next step

Building the new IPM model

Integrated Production Model

Introduction

- > Objective to promote the new way of the working (IPM, multidisciplinary)
- > To give production dynamics prediction
- > To optimize production
- > IPM (PVTP, Prosper, MBAL, GAP)

Bilogora – Bačkovica field

Field location – 20 km east from Bjelovar (Podravina district)

- > Anticline
- Fluid features:
- > methane

> well BI-82 – fluid contains 15,43 % CO₂

Prosper – well models

> VLP curve > IPR curve Matching VLP/IPR > Operating point > Production optimization > System analysis > Completion

GAP – Integrated Production Model

Data input

- > Well models Prosper
- > Reservoir model MBAL
- > Pipelines (pressure, temperatures, pipe elevations)
- > Separators
- > Constraints (time)

Results

Results

PRODUCTION DYNAMICS OF THE FIELD BILOGORA-BAČKOVICA (GAS AND CO₂ PRODUCTION, GAS CUMULATIVE) TILL 31st DECEMBER 2010.

Production dynamics
CO₂, gas production
Gas cumulative

Conclusion

- > Production optimization
- > Dynamic production prediction
- > Updating hydrodynamic measurements
- Budget prediction
- Completion and workover dynamics prediction
- Base for economic model
- Possibility of reservoir and production monitoring

THANK YOU

