

How to maximize the value of mature HC fields?

Workshop

Budapest, 18. November 2010.

Society of Petroleum Engineers

Improving CO2 Flooding Efficiency to Maximize the Value of Mature HC Fields

How to maximize the value of mature HC field? SPE Workshop Budapest November 18, 2010 Kalocsai Péter MOL Nyrt, Edit Kózelné Székely Dr. BME

Why should apply CO2 flooding? Advantage of CO2 flooding Available in large amount from natural reservoir Inexpensive Non-flammable, non-toxic Reduced oil viscosity Oil swelling Pressure maintenance

Why should not apply CO₂ flooding?

Disadvantage of CO₂ flooding

- Corrosion
- Recirculation (environment protection)
- CO₂ low viscosity
 - CO₂ viscosity 0,04-0,06 cP
 - Oil viscosity 0,6-1,0 cP
 - High mobility ratio
 - Low sweep efficiency

Mobility ratio

$$M = \frac{K_{CO2}}{\mu_{CO2}} / \frac{K_{oil}}{\mu_{oil}}$$

The viscosity ratio leads to the mobility ratio.
Unfavorable mobility ratio contributes to miscible fingering and reducing the aerial sweep efficiency.
Low viscosity of CO₂ contributes to the low vertical efficiency, especially in stratified reservoir.

Displacement fronts

In case of $1 \le M$

In case of 10~M

Viscous miscible fingering

Increase the sweep efficiency

▶CO₂ mobility reduction

- WAG decrease the relative permeability of CO₂ by increasing the water saturation
 - Advantage: water prolongs the duration of the CO₂ flood.
 - Disadvantage: water shield the residual oil from CO₂ and reduces the displacement.
- ▶ Generation of CO₂ foam,
 - Advantage: foam blocks preferential flow channels.
 - Disadvantage: the surfactant adsorbs and the foam breaks down.
 - Increasing viscosity of CO₂ via addition of a "thickening agent"

Criteria of thickening agents

Will be soluble in CO₂ without co-solvent
Generally it is necessary to increase the viscosity a 2-10 fold in concentration as low as 0.1~3 wt%, as determined Darcy's Law for flow of through porous media,

- Will be inexpensive,
- Safety handle,
- Stable at reservoir conditions.
- Distribution coefficients will be low.

Design of thickening agent candidates

- The thickener should not be tested in organic liquid an initial screening. The most CO₂ soluble surfactant have been identified as low solubility in alkenes.
- 2. Polymers should design specifically for use CO_2 . This is achieved by incorporating CO_2 -philic tails because CO_2 is a feeble solvent.
- 3. Viscosity must be measured in the appropriate apparatus and flow range because of non-Newtonian nature of the thickened carbon dioxide solution.
- 4. The thickener will work lower concentrations if it is a end functionalized polymer forms associative or H-bonded aggregates in solution.

Classical CO₂ -philic functional groups

Compounds studied

- Commercial, non-halogenated oligomers and polymers Commercial surfactants Peracilated sugars and their derivatives Terc-butyl-phenols and their derivatives Dendrimers
- Iso-octanol derivatives

Experimental techniques

Dynamic solubility determination technique
View cell unit for cloud point measurements
View cell unit for measurement of distribution coefficients

Fall-tube viscometer
 Apparatus for solubility and mobility measurement (core flooding)

Dynamic solubility determination technique

View cell unit for cloud point measurements

MOLCO-15

Solubility of Brij72

17

Solubility of MOLCO-2

View cell unit for measurement of distribution coefficients

Distribution coefficients in CO_2 electrolyte (water) biphasic system

Material				
MOLCO-2	1.56	>200	11-39 MPa 33-95 °C	The low solubility in
	8.86	>600	12-38 MPa 35-96 °C	water is the limiting.
MOLCO-14	5.22	0.4-0.88	14-15 MPa 35-43 °C	
	5.23	0.61-0.8	14-20 MPa 32-45 °C	
MOLCO-20	1.58-1.78	>1000	20 MPa 50 °C	Solubility in water is
	19.8	>500	15 MPa 50 °C	very low.
MOLCO-23	19.8-19.9	>150	19.8-20.3 MPa, 50°C	21

Apparatus for Solubility and Mobility Measurement

High Pressure Cell for Solubility Test

Two parts
upside for pressurising
downside for visualising
Pressure max: 400 bar
Temperature max: 150 °C
Visual observation is possible
CAD constructed

Comparison of different methods

	m/m % iso- octanol		P (bar)	T (°C)	η_{rel}	η_{rel}	
					Fall-tube	Core	
						flooding	
		14 %	153	65	1.5	1.6	
		20 %	153	65	1.7	1.9	
		35 %	153	65	2.9	2.8	
		43 %	153	65	3.9		
							24

Conclusions

- Improved a experimental method to select and caracterise the thickening agent candidates
- Some of examined materials were CO₂ soluble
- These materials increased the viscosity less then 10 %
- Iso-octanol increased the viscosity a 1.5-3 fold in concentration 10-30 m/m%,
- Based on iso-octanol molecule with longer hydrocarbon chains may have a greater chance to give a higher viscosity at lower concentration
- Worldwide research of thickening agents started more then ten years ago but effective materials not have been founded, the problem is actual

Acknowledgments

This work was financially supported by MOL Plc R&D Program and also supported by the following consortium universities: Budapest University Technology and Economics, and University of Miskolc and University of Pannonia.

This support is gratefully acknowledged