

Mature Based for New Solutions Conference

Visegrád, 21 November 2013

Society of Petroleum Engineers

Production increase for low pressure gas wells with liquid loading problems A Case Study

Zoltan Turzo, PhD. UoM Mihaly Gyukics, Andras Filip, Sandor Puskas MOL NyRt.

(and many others)

Date	Depth [m]	Pressure [Mpa]	Δl [m]	Δp [Mpa]	Density [kg/m³]
4/9/2009	10	6.641			
	1500	7.572	1490	0.931	62.5
	1800	7.866	300	0.294	98.0
	1955	8.793	155	0.927	598.1
31/08/2010	10	4.411			
	1500	5.009	1490	0.598	40.1
	1800	6.789	300	1.78	593.3
	1955	8.172	155	1.383	892.3

Date	Depth	Pressur	Δl	$\Delta \mathbf{p}$	Density
	[m]	e [Mpa]	[m]	[Mpa]	$[kg/m^3]$
1/9/2010	10	4.405			
	1000	4.796	990	0.391	40.3
	1900	5.107	900	0.311	35.2
	2060	5.17	160	0.063	40.1
28/09/2011	10	3.996			
	1000	4.332	990	0.336	34.6
	1900	4.617	900	0.285	32.3
	2060	4.673	160	0.056	35.7

Well #	Closed WHP	Producing WHP	WHT	СНР	Production type	Producing time
	[bar]	[bar]	[°C]	[bar]		
En-É-14	26	11	29	33	Intermittent	2-3 days
En-É-18	27	10	25	14	Intermittent	2-3 days
En-87	20	6	19	0	Continuous	cont.
En-88	20	7	16	0	Continuous	cont.
En-61	24	6	16	14	Intermittent	sensible for WHP
En-67	20	8	12	8	Intermittent	sensible for WHP
En-84	48	8	42	0	Intermittent	1-2 monthes
En-25	26	7	11	0	Intermittent	sensible for WHP

Well# - EN-E-14, 1st producing gradient

Well# - EN-87, 2nd producing gradient

Well# - EN-87, 2nd producing gradient

Well# - EN-E-14, dew point curve

Well# - EN-87, dew point curve

Well# -EN-E-14, water content corrected wellstream composition

Component	mol%	
\mathbf{C}_{1}	78.509	
\mathbb{C}_2	3.328	
C ₃	1.713	
i-C ₄	0.65	
n-C ₄	0.522	
i-C ₅	0.253	
n-C ₅	0.186	
C ₆	0.193	
\mathbb{C}_7	0.135	
C_8	0.067	
CO_2	3.313	
$N_2 (+O_2)$	1.343	
H_2O	9.788	
Total:	100.000	

Well-EN-87, water content corrected wellstream composition

Component	mol%
C1	75.669
C2	4.358
C3	2.122
i-C4	0.76
n-C4	0.635
i-C5	0.283
n-C5	0.207
C6	0.184
C7	0.111
C8	0.053
CO2	3.418
$N_2 (+O_2)$	2.8
H ₂ O	9.4
Total:	100.000

Well# - EN-E-14 kút

Well# EN-87

Well# - EN-E-14 Echometer through tubing shots

Time	P _{to}	L _l	P_{tin}
	kPa	m	kPa
11:04:33	1187	1266.0	3181
11:14:51	1286	1813.0	3381
11:24:36	1304	1864.0	2140
11:35:33	1407	1772.0	2417

Well# - EN-87 Echometer through tubing shots

Time	P_{to}	L _l	P_{tin}
	kPa	m	kPa
12:03:13	1572	544.6	4707
12:26:42	3098	1087.7	5365
12:44:17	4133	1853.4	5142
12:59:38	4423	1851.7	5536
13:13:22	4533	1872.2	5669

New measurements in Well EN-E-14 to detect fluid loading

Planned:

I.Closed gradient measurement, immediately after complete fluid removal from the bottom, measurement frequency is 200 m, and 50 m near the bottom

II.FBHP measurement in 3 steps

- 1. WHP is the usual 12 bar, until the stabilization of the flow
- 2. WHP is 5 bar, until the stabilization of the flow
- 3. WHP is the 12 bar again, duration 3-4 days III.Production gradient measurement during pull-out

New measurements in Well EN-E-14 to detect fluid loading

Performed:

(started:2012. 12. 04. 07:30)

I.Closed gradient measurement, immediately after complete fluid removal from the bottom, measurement frequency is 200 m, and 50 m near the bottom

II.FBHP measurement in 3 steps

- 1. WHP is the usual 12 bar, until the stabilization of the flow
- 2. WHP is 5 bar, until the stabilization of the flow
- 3. WHP is 5 bar, duration hours

III.Production gradient measurement during pull-out (Finished: 2012, 12, 06, 12:30)

Well# - EN-E-14, FBHP measurement, WHP: 10-12 bar

Well# - EN-E-14, Production data during FBHP measurement, WHP: 10-12 bar 160 40 140 35 120 30 100 25 Flow rates Pressure 20 80 60 **15** 40 10 Qg -QI 20 5 -WHP —FBHP 0 0.00 5.00 15.00 10.00 20.00 Time, hour

Well# - EN-E-14, Production data during FBHP measurement, WHP: 5-8 bar 140 40 35 120 -Qg 30 —QI 100 -WHP **FBHP** 25 Flow rate Pressure 80 20 60 **15** 40 10 20 5 10.00 Time, hour 0.00 5.00 **15.00** 20.00

VLP/IPR MATCHING (03/12/2013 - 22:26:30)

New program to show the water at the bottom

- 1. Closed gradient
- 2. Flowing gradient #1
- 3. Continuous FBHP measurement#1:
- 4. Flowing gradient#2
- 1.Continuous FBHP measurement#2
 Until ceasing production or stabilisation of a minimal flow rate
- **5.Closed gradient**

15/06/2013 01:01:-5:35, flowing

17/06/2013 7:50-11:00, after compressor problem

19/06/2013 7:40-12:56, closed

Summary

- Identification of liquid loading
 - Evaluate adequate data
- Measurements
- Identification of loading type
- Determination of the way of liquid removal

Well# - EN - E- 14

- Loading is occurred at the upper part of tubing
- There are no possibilities to increase flow rate (from the terms of liquid removal)
- Possible solution#1: heating the upper part of the tubing (Insulation is not enough)
- Possible solution#2:Using CT at the upper 1000 m of the tubing.

Well# EN-E-14, Gas flow rate vs. CT size and length

Thank You for Your Attention!