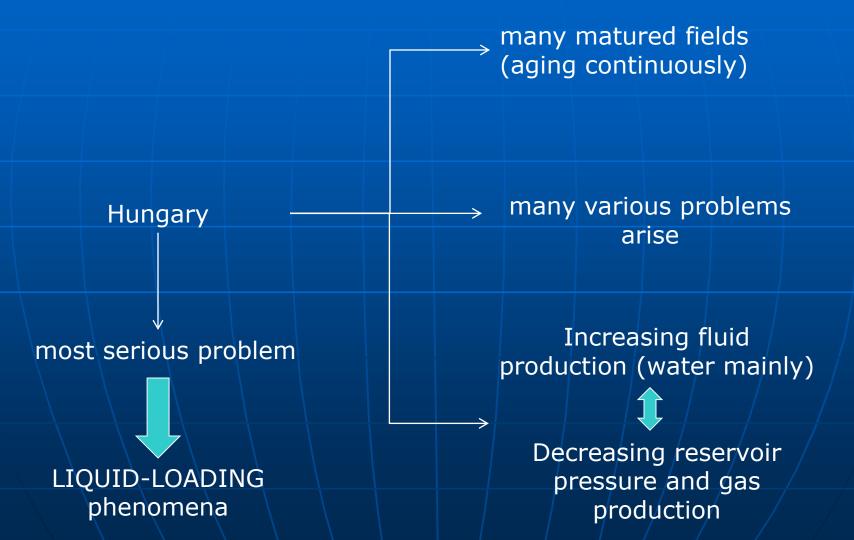


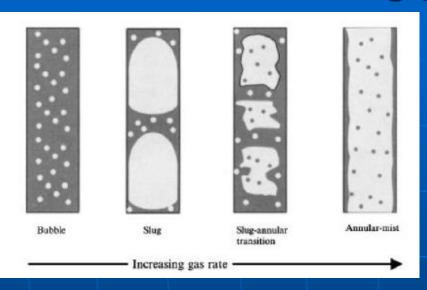
How is the next generation motivated by oil industry of 2015 in CEE region

Conference

Visegrád, 19 November 2015


Society of Petroleum Engineers

Good Luck!


Deliquification of liquidloaded gas wells

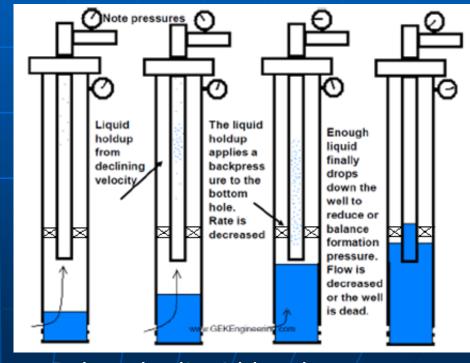
Made by: Gábor Pákozdi

Hungarian fields

The background and process of liquidloading phenomena

Depth

Gas gradient above liquid


Liquid Level

Water gradient below liquid

Some gas may bubble up through
liquid column

Flow regimes and their effects to the well are changing → well death

Process:

Below the liquid level > greater pressure increment

Theoretical background of the phenomena

Turner et al.'s model

$$V_{crit} = \frac{21.017 \times \sigma^{0.25} (\rho_l - \rho_g)^{0.25}}{\rho_g^{0.5}}$$

Nosseir et al.'s model

If the Reynolds-number lower or equal with 20.000 and the flow is turbulent:

$$V_{crit} = \frac{14.6 \times \sigma^{0.35} \times (\rho_l - \rho_g)^{0.21}}{\mu_g^{0.134} \times \rho_g^{0.426}}$$

If the Reynolds-number higher than 20.000:

$$V_{crit} = \frac{21.3 \times \sigma^{0.25} \times (\rho_l - \rho_g)^{0.25}}{\rho_g^{0.5}}$$

Coleman et al.'s model

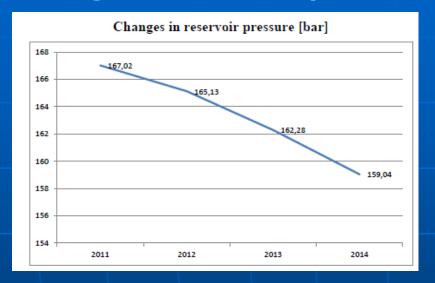
$$V_{critCondensate} = 3.369 \times \frac{(45 - 0.031p)^{0.25}}{(0.0031p)^{0.5}}$$

$$V_{critWater} = 4.434 \times \frac{(67 - 0.031p)^{0.25}}{(0.0031p)^{0.5}}$$

Zhou et al.'s model

If the factor X is lower than β or equal with it:

$$V_{crit} = \frac{1.593 \times [\sigma \times (\rho_l - \rho_g)]^{0.25}}{\rho_g^{0.5}}$$

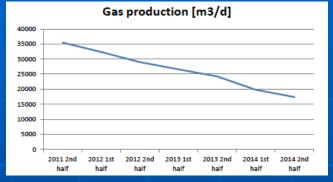

$$X = \frac{V_l}{V_g + V_l}$$

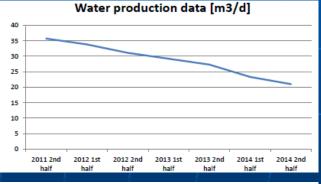
If the factor X is higher than β :

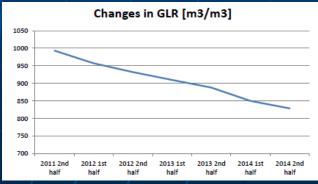
$$V_{crit} = \frac{1.593 \times [\sigma \times (\rho_l - \rho_g)]^{0.25}}{\rho_g^{0.5}} + \ln \frac{X}{\beta} + \alpha^{5}$$

Analysis of the selected well

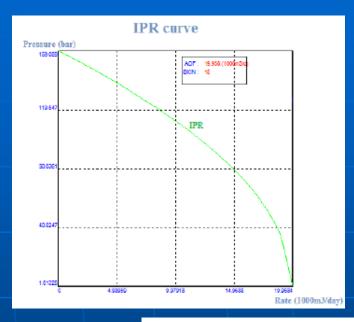
Changes in reservoir pressure:

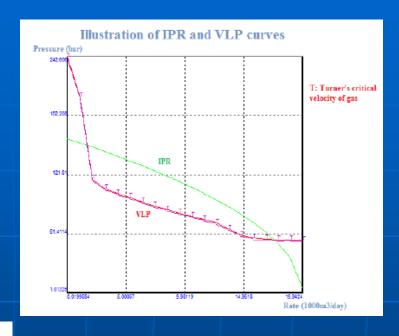


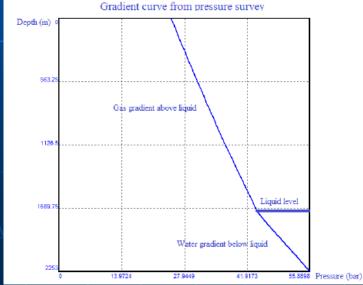

Decreasing gas production rate;
Decreasing water production rate;
Decreasing GLR;
Decreasing reservoir pressure


Good indicators of liquid-loading

Production data of the selected


well:





PROSPER model of the selected well

Actual height of accumulated water can be found from the gradient curve

Calculation of the height of accumulated water in the selected well

Determination of the density of the liquid:

Vazquez & Beggs correlation:

$$C1_w = 0.9911 + 6.35 \times 10^{-5} \times T_{wf} + 8.5 \times 10^{-7} \times T_{wf}^{2}$$

$$C2_w = 1.093 \times 10^{-6} - 3.497 \times 10^{-9} \times T_{wf} + 4.57 \times 10^{-12} \times {T_{wf}}^2$$

$$C3_w = -5 \times 10^{-11} + 6.429 \times 10^{-13} \times T_{wf} - 1.43 \times 10^{-15} \times T_{wf}^{2}$$

$$B_{wpw} = C1_w + C2_w \times P_{wf} + C3_w \times P_{wf}^2$$

$$\begin{split} X &= 5.1 \times 10^{-8} \times P_{wf} + \left(T_{wf} - 60 \right) \times \left(5.47 \times 10^{-6} - 1.95 \times 10^{-10} \times P_{wf} \right) \\ &+ \left(T_{wf} - 60 \right)^2 \times \left(-3.23 \times 10^{-8} + 8.5 \times 10^{-13} \times P_{wf} \right) \end{split}$$

$$B_w = B_{wpw} \times (1 + X \times Y \times 10^{-4})$$

Density of the liquid:

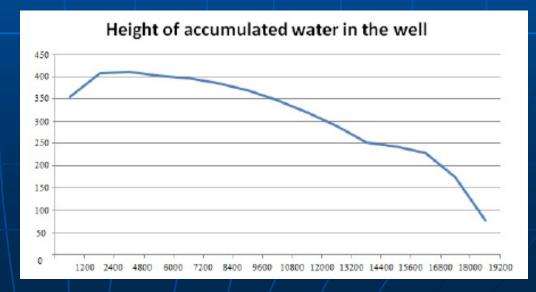
$$\rho w = \frac{\rho_{wsc}}{Bw}$$

$$\rho w = \frac{1000}{1,049} = 953,289 \, kg/m^3$$

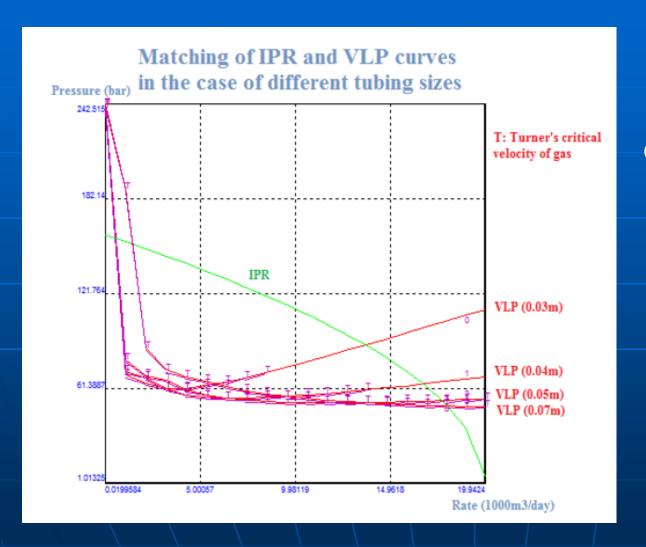
Bw = 1,049

Calculation of the height of accumulated water in the selected well

Flow rate	IPR pressure	VLP pressure	Pressure difference
[m³/day]	[bar]	[bar]	[bar]
2117	150,3	117,1	33,2
3165	145,7	107,6	38,1
4214	141,1	102,6	38,5
5263	136,3	98,8	37,5
6311	131,3	94,3	37
7360	126,1	90,1	36
8408	120,8	86,3	34,5
9457	115,1	82,7	32,4
10505	109,2	79,3	29,9
11554	103	76	27
12600	96,4	72,8	23,6
13651	89,3	66,6	22,7
14698	81,6	60,3	21,3
15748	73,1	56,9	16,2
16797	63,4	56,2	7,2


Using a simple formula:

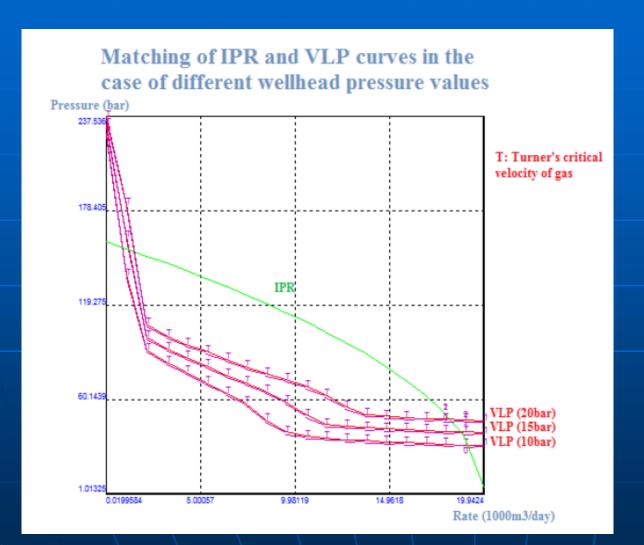
$$h = \frac{\Delta p}{\rho \times g}$$


$$\rho w = \frac{1000}{1,049} = 953,289 \ kg/m^2$$

g is known to be 9,81 m/s²

It can be seen in the diagram, if the gas rate is decreasing, the height of accumulated water is increasing.

Possible solutions


Almost the half
size of the
original tubing

>
solution without
liquid-loading

BUT!!!

The gas rate decreases significantly!!!

Possible solutions

Different (lower) wellhead pressures

will not give a solution without liquid-loading

Possible solutions

Artificial lift systems:

- Plunger lift
- SRP, ESP, PCP

High costs, uneconomical

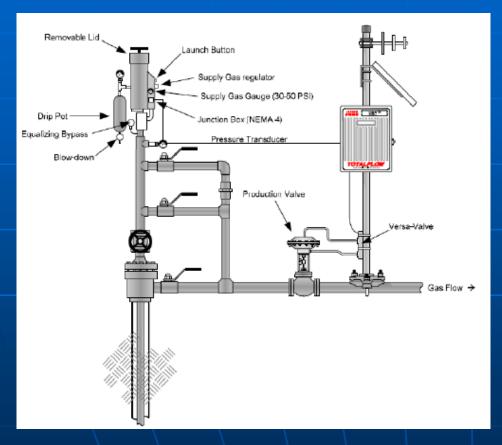
Gas lift:

- Continuous
- Intermittent

Other ways:

- Applying SURFACTANTS

Gas lift in a gas well?

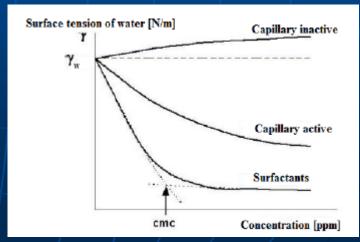

Uneconomical

Losses from original production

Low costs, **could be** economical

Foam Technology (using surfactants)

Injection system:


$$\sigma_m = \sigma_v - A \times \ln(1 + B \times c)$$

Efficiency based on:

- Concentration (CMC)
- Brine
- Hydrocarbon condensate
- Temperature

Type of surfactants:

- Anionic
- Cationic
- Nonionic
- Amphoteric

Calculations

Depth	Value of Turner's critical velocity		
[m]	[m/s]		
150	4,5		
300	4,4		
450	4,3		
600	4,2		
750	4,1		
900	4,0		
1050	3,93		
1200	3,85		
1350	3,77		
1500	3,7		
1650	3,6		
1800	3,52		
1950	3,4		
2100	3,28		
2253	3,17		

Density of liquid (ρ_{lj} : 953,3 kg/m³, it equals with 59,5 lbm/ft³ Density of gas (ρ_{g}): 34,3 kg/m³, it equals with 2,14 lbm/ft³

$$Vcrit = \frac{21.017 \times \sigma^{0.25} (\rho_l - \rho_g)^{0.25}}{\rho_g^{0.5}}$$

$$\sigma = 0.0070318 \frac{lbf}{ft} \ or \ 102,6375 \ m \ N/m$$

The new value of surface tension is:

$$\sigma_{new} = 25,66 \, m \frac{N}{m} or \, 0.0017579 \, \frac{lbf}{ft}$$

$$Vcrit' = \frac{21.017 \times \sigma_{new}^{0.25} (\rho_l - \rho_g)^{0.25}}{\rho_g^{0.5}}$$

$$Vcrit' = 8.096 \frac{ft}{s} or 2.468 \frac{m}{s}$$

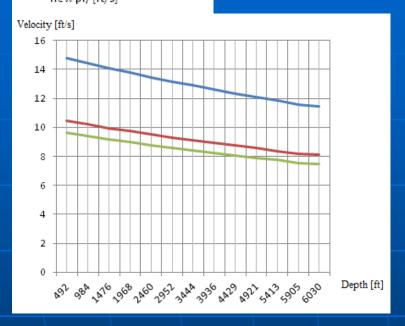
Calculations

Depth	Value of Tumer's critical velocity		
[m]	[m/s]		
150	4,5		
300	4,4		
450	4,3		
600	4,2		
750	4,1		
900	4,0		
1050	3,93		
1200	3,85		
1350	3,77		
1500	3,7		
1650	3,6		
1800	3,52		
1950	3,4		
2100	3,28		
2253	3,17		

Density of liquid (ρ₁₎: 953,3 kg/m³, it equals with 59,5 lbm/ft³ Density of gas (ρ_g): 34,3 kg/m³, it equals with 2,14 lbm/ft³

$$Vcrit = \frac{21.017 \times \sigma^{0.25} (\rho_l - \rho_g)^{0.25}}{{\rho_g}^{0.5}}$$

The new value of the density of liquid is:


$$\rho_{l_{new}} = 43,91 \frac{lbm}{ft^3} or 703,37 \frac{kg}{m^3}$$

$$Vcrit" = \frac{21.017 \times \sigma_{new}^{0.25} (\rho_{l_{new}} - \rho_{g})^{0.25}}{\rho_{g}^{0.5}}$$

$$Vcrit" = 7.479 \frac{ft}{s} or 2.28 \frac{m}{s}$$

Critical velocity [ft/s] Summarizing Critical velocity (new σ) [ft/s]

Critical velocity (new σ and new ρl) [ft/s]

Depth	Critical	Interfacial	New value of	New value of	New value of
[ft]	velocity	tension	interfacial	critica1	critica1
	[ft/s]	[1bf/ft]	tension	velocity	velocity
			[1bf/ft]	(new σ)	(new σ and
				[ft/s]	new ρ_l)
					[ft/s]
492	14,78	0,01951	0,00488	10,45	9,66
984	14,43	0,01772	0,00443	10,20	9,42
1476	14,09	0,01611	0,00403	9,96	9,20
1968	13,77	0,01471	0,00368	9,76	8,99
2460	13,46	0,01344	0,00336	9,52	8,79
2952	13,17	0,01232	0,00308	9,31	8,60
3444	12,89	0,01129	0,00282	9,12	8,42
3936	12,62	0,01038	0,00260	8,93	8,24
4429	12,36	0,00954	0,00239	8,74	8,07
4921	12,1	0,00877	0,00219	8,56	7,90
5413	11,85	0,00806	0,00201	8,38	7,74
5905	11,55	0,00728	0,00182	8,17	7,54
6030	11,45	0,0070318	0,0017579	8,096	7,479

By applying foaming agents

decrease the density and the interfacial tension of the liquid

critical velocity will decrease significantly!!!

 \rightarrow

Thank you for your kind attention!

Have you got any questions?