The invaded zone's effect on the inflow of perforated wells

Ádám Viktor Pásztor

Low and volatile oil price environment

Technical responses in the Pannonian Basin Conference

November 17, 2016

Perforation parameters

Open hole radius	r _v
Perforation tunnel radius	rp
Crushed zone radius	r _c
Perforation length	L
Phase angle	E
Shot density	n
$\succ k_{crushed}/k_{res}$	α

Halliburton.com

Data of the wells

Perforation parameters							
L _p [ft]	ns [spf]	α	h _p [ft]	θ [°]	r _p [ft]	r _c [ft]	
1	5	0.3	25	0	0.015	0.056667	
Reservoir parameters					Well parameters		
k [mD]	r _e [ft]	P _r [psi]	k _н [mD]	k _v [mD]	r _w [ft]	h [ft]	
50	1000	3000	50	5	0.292	25	
Oil Properties			Gas Properties				
API density	µ₀ [cP]	B _o [bbl/STB]	T [R°]	Z	µ _g [cP]	Yg	
45.375	0.751	1.16	630	1	0.01933	0.64	

Analytical IPR equation – Base concept

> The flow is separated into two sections:

- \succ Flow perpendicular to the axis of the well
- > Flow perpendicular to the axis of the perforation channels
- \succ The perforations are assumed to be small wells .
- Modification of the radius of the perforation channels and the crushed zone (Pásztor Á. & Kosztin B. 2015).

Modification of r_p:

Modification of r_c:

The extended wellbore

Θ=120° / 90° / 60° / 45°

Θ=360°

Θ=180°

The perforation channels' drainage space

Θ=360° / 180°

Θ=120°

The invaded zone – open hole completion

 $S = \left(\frac{k}{k_s} - 1\right) \ln\left(\frac{r_s}{r_w}\right)$

r_s: invaded zone radius r_w: wellbore radius k_s: invaded zone permeability k: reservoir premeability

Perforations don't reach the clean zone Perforations reach the clean zone

Perforations don't reach the clean zone

I. Flow to the invaded zoneII. Flow to the extended wellboreIII. Flow to the perforation channels

- I. Flow to the first extended wellbore (q)
- II. First flow to the perforation channels (q_1)
- III. Flow to the invaded zone (q_2)
- IV. Flow to the second extended wellbore (q_2)
- V. Second flow to the perforation channels (q_2)

Perforations reach the clean zone

Skin vs L_p

 $(k_s/k=0.2)$

AOFP vs L_p

Oil wells (k_s/k=0.2)

AOFP vs L_p

Gas wells (k_s/k=0.2)

Conclusion

- High skin value indicates that the perforation channels don't reach the clean zone
- ➤ If the perforations are not long enough to reach the clean zone, better productivity can be achieved with re-perforating the well than with matrix acidizing

Thank you for your attention!

