

How to maximize the value of mature HC fields?

Workshop

Budapest, 18. November 2010.

Society of Petroleum Engineers

Application of cost efficient lightweight cement slurries in mature environments

Balogh Viktor Schlumberger

Society of Petroleum Engineers

Agenda

Theoretical Background

- Frac gradient in depleted zones
- Requirements for lead cements
- Decreasing cement density

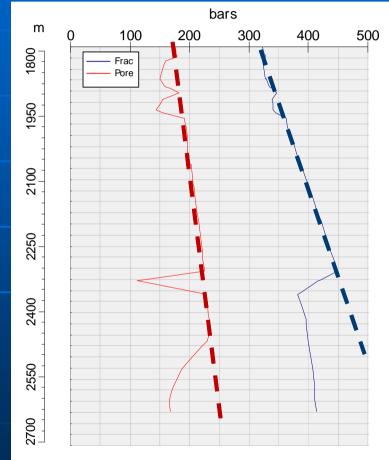
Microspheres in cementing

- Types of microspheres
- Aluminium silicate microsphere
- Engineered borosilicate microsphere

Case studies & application summary

- Aluminiumsicilate microsphere
- Engineered borosilicate microsphere
- Application summary

Frac gradient in depleted zones One dimensional compaction model $\sigma_{OB} = \sigma_Z + P_f$ Overburden stress to be supported by the rock and the formation fluid Eaton's equation


$$P_{frac} = \frac{1}{1 - \nu} (\sigma_{OB} - P_f) + P_f$$

... just to tie in the Young modulus

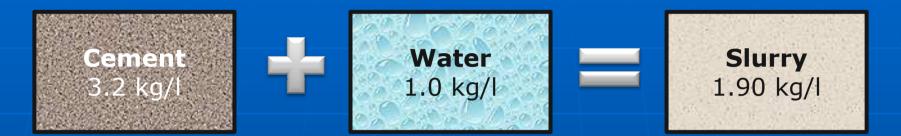
4

Frac gradient in depleted zones

- Trends mapped in Pannonian Basin (Lányi-Mucsányi-Szabó)
- Critical importance for layered
 reservoirs in brown fields

Pore and frac pressures in Algyő

Formation Press.


Frac gradient in depleted zones

 Lower frac gradient will require lower ECD (Equivalent Circulating Density)
 Primary factor in ECD: slurry density

Depleted reservoirs and mature fields require low density cement slurries

Requirements for lead cements

- Minimize formation damage avoid losses into formation (low density) minimize fluid invasion (good fluid loss)
- Provide acceptable zonal isolation cement to required TOC (low density) maximize isolation (low permeability) achieve good cement bond (mud removal)
 Balanced economical performance reserve premium solution for production
 - zone (keep costs reasonable)

Have to add something to decrease density...

- **Option 1 Liquid**
- more water!!!
- and some bentonite for stability

- Option 2 Gasadd nitrogen
- and something to stabilize foam)

Option 3 – Solid

- add something lightweight (flyash, microshperes)
- ...but pay attention on stability

Same
Same
Minor decrease
Medium
n/a
Medium

Option 2 – Nitrogen addition

- Decreased density
- Increased permeability (porosity)
- Reasonable fluid loss
- Reasonable compressive strength (function of density)
- Reasonable slurry cost, but might come with related extra costs
- Very careful testing required (stability)

Option 3 – Solids addition

- Decreased density
- Maintained permeability (porosity)
- Good fluid loss (high solids content)
- Reasonable compressive strength (function of density)
- Reasonable slurry cost
- Careful testing required (stability and mixability)

Option 1 – Liquid addition

- Decreased density
- Increased permeability (porosity)
- Increased fluid loss (more fluid)
- Decreased compressive strength (function of density)
- Good stability with bentonite (or others)
- Very low slurry cost

Option 3 – Solids addition What kind of solids preferred?

 Low gravity solids (floaters)
 Silicates for optimum synergy with Portland cement
 Hollow microspheres

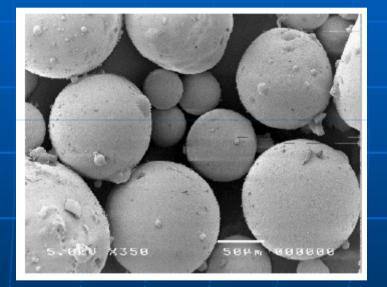
Types of microspheres

Different glasses
Aluminium silicates
Borosilicates
Ferrosilicates

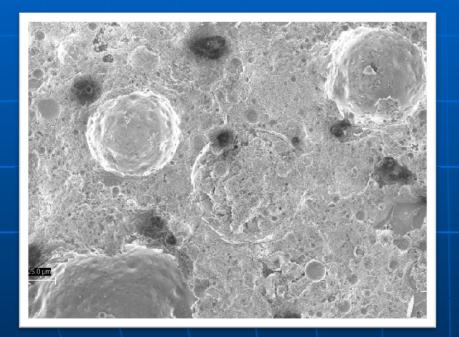
Different strength

- Mechanical resistance
- Pressure resistance

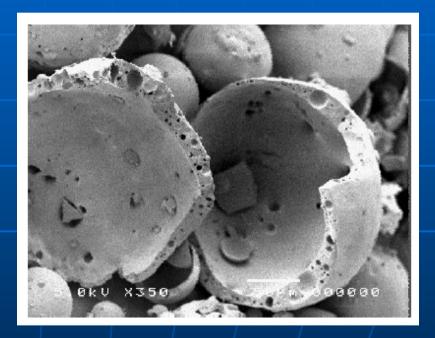
Different size
Coarse particles
Medium particles


Different wettability
Uncoated
Coated (antistatic)

Coated (wettability)


Types of microspheres

Basic microspheres: Class F flyash


Aluminium silicate (industrial pozzolan)
No coating applied
Varying particle size
Varying density
Varying strength

Types of microspheres Basic microspheres: Class F flyash

Pozzolan + Portlandite = CSH-gel

Unpredicatble pressure resistance

Types of microspheres

Premium microsphere: Engineered borosilicate particles

- Borosilicate glass
- Antistatic coating
- Pressure resistance can be selected
- Narrow density window
- Narrow particle size window

Types of microspheres

Premium microsphere: Engineered borosilicate particles

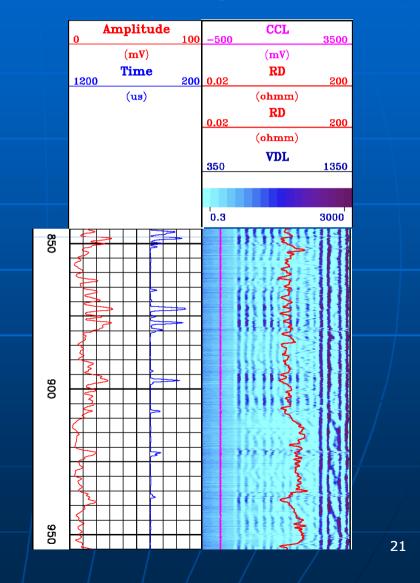
- Pressure resistance selected based on specific requirements
- Good stability can be achieved (particle size and density)
- Limited reactivity of borosilicate
- Wettability of coating

Case study: UGS project

Design

Depleted zones in multilayered reservoir

- ECD limited to 1.70 kg/l
- 1.40 kg/l bimodal lead slurry Class F Flyash microspheres fibrous lost circulation material


 1.60 kg/l tail slurry gas migration control additive engineered Young's modulus cement

Case study: UGS Project Design Lead slurry (1.40 kg/l, porosity: 52%) Compressive strength (at surface!): 625 psi in 16 hrs 1345 psi in 24 hrs API static fluid loss: 78 ml (at 63 degC) Execution Cement to surface on 43 of wells Pressure resistance not as per requirements

Case study: UGS Project

Evaluation

- Good cement bond across open hole
- Top of cement as required (surface)
- Microannulus in casing-to-casing due to shrinkage (pozzolanic reaction)

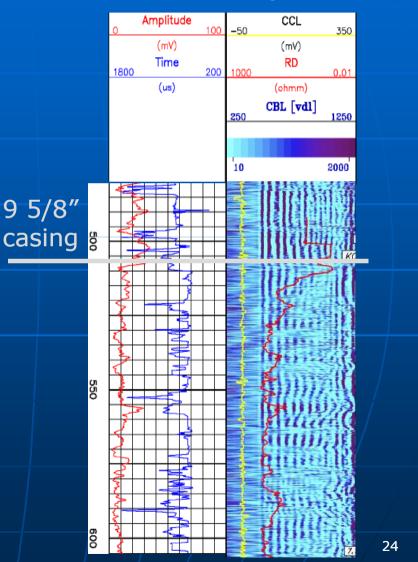
Case study: Well reentry

Design

Multiple depleted zones across OH section

- ECD limited to 1.70 kg/l
- 1.40 kg/l bimodal lead slurry engineered borosilicate microspheres fibrous lost circulation material

 1.92 kg/l tail slurry gas migration control additive Class G cement system with added silica


Case study: Well reentry Design Lead slurry (1.40 kg/l, porosity: 50%) Compressive strength (at 40 degC): 500 psi in 7.5 hrs 1770 psi in 12 hrs API static fluid loss: 82 ml (at 95 degC) Execution No crushing predicted based on lab tests High mixing energy required due to coating

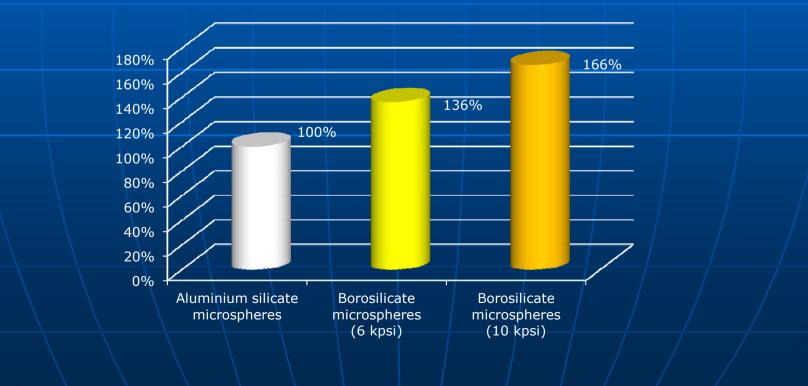
23

Case study: Well reentry

Evaluation

- Good cement bond all along section
- Top of cement as required (80 m into previous casing)
- No microannulus
- No crushing
- High mixing energy

Application summary


First consideration: slurry density

Application summary

Third consideration: downhole pressure

- Pressure resistance with safety margin
- Safety margin limited by slurry cost

Conclusion

- Mature fields with depleted reservoirs require extra care during cementing
- Good zonal isolation and protection of remaining HC in place is challenging
- Microspheres are a cost efficient solution for lightweight cement systems
- Careful selection of microspheres is required to satisfy technical and economical requirements

Thank you for your attention...

...WAITING FOR YOUR QUESTIONS